deepseek-ocr 구동 테스트

This commit is contained in:
kyy
2025-11-06 11:58:17 +09:00
parent 2c3b417f3b
commit 723fd4333e
7 changed files with 411 additions and 2 deletions

View File

@@ -22,8 +22,8 @@ MODEL_PATH = "deepseek-ai/DeepSeek-OCR" # change to your model path
# Omnidocbench images path: run_dpsk_ocr_eval_batch.py
INPUT_PATH = "/workspace/input"
OUTPUT_PATH = "/workspace/output"
INPUT_PATH = "/workspace/test/input"
OUTPUT_PATH = "/workspace/test/output"
# PROMPT = f"{PROMPT_TEXT.strip()}"
PROMPT = "<image>\n<|grounding|>Convert the document to markdown."
# PROMPT = '<image>\nFree OCR.'

0
test/__init__.py Normal file
View File

Binary file not shown.

Binary file not shown.

BIN
test/output/images/0_0.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

View File

@@ -0,0 +1,12 @@
{
"filename": "2016-08556-211156.pdf",
"model": {
"ocr_model": "deepseek-ocr"
},
"time": {
"duration_sec": "6.59",
"started_at": 1762395627.3137395,
"ended_at": 1762395633.9023185
},
"parsed": "\n수신자 한국수출입은행장 \n\n참조 EDCF Operations Department 2 \n\n제 목 방글라데시 반다주리 상수도 사업 컨설턴트 고용을 위한 문제유발 행위 불개입 확약서 \n\n1. 귀 은행의 무궁한 발전을 기원합니다. \n\n2. 표제 사업 컨설턴트 고용을 위한 제안요청서 조항에 따라 입찰 참여를 위한 \"문제유발행위 불개입 확약 서\"를 \n\n첨부와 같이 제출하오니, 참조해주시기 바랍니다. \n\n* 첨부: 문제유발행위 불개입 확약서 원본 1부. \n\n주식회사 삼안 대표이사 \n\n![](images/0_0.jpg)\n\n \n\n수신처 : Ms. Jiyoon Park, Sr. Loan Officer \n\n문서번호 201609-4495 (2016-09-22) \n\n서울 광진구 광나루로56실 85 프라임센터 34층 해외사업실 \n\n전화 02)6488-8095 \n\n담당 : 김관영 \n\nFAX 02)6488-8080 \n\n/ http://www.samaneng.com \n\n이메일 shkim5@samaneng.com<end▁of▁sentence>\n<--- Page Split --->\n"
}

397
test/test.py Normal file
View File

@@ -0,0 +1,397 @@
import io
import json
import os
import re
import time
import config.model_settings as config
import fitz
import img2pdf
import numpy as np
from config.env_setup import setup_environment
from PIL import Image, ImageDraw, ImageFont, ImageOps
from services.deepseek_ocr import DeepseekOCRForCausalLM
from services.process.image_process import DeepseekOCRProcessor
from services.process.ngram_norepeat import NoRepeatNGramLogitsProcessor
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.model_executor.models.registry import ModelRegistry
setup_environment()
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
class Colors:
RED = "\033[31m"
GREEN = "\033[32m"
YELLOW = "\033[33m"
BLUE = "\033[34m"
RESET = "\033[0m"
# --- PDF/Image Processing Functions (from run_dpsk_ocr_*.py) ---
def pdf_to_images_high_quality(pdf_path, dpi=144):
images = []
pdf_document = fitz.open(pdf_path)
zoom = dpi / 72.0
matrix = fitz.Matrix(zoom, zoom)
for page_num in range(pdf_document.page_count):
page = pdf_document[page_num]
pixmap = page.get_pixmap(matrix=matrix, alpha=False)
Image.MAX_IMAGE_PIXELS = None
img_data = pixmap.tobytes("png")
img = Image.open(io.BytesIO(img_data))
if img.mode in ("RGBA", "LA"):
background = Image.new("RGB", img.size, (255, 255, 255))
background.paste(img, mask=img.split()[-1] if img.mode == "RGBA" else None)
img = background
images.append(img)
pdf_document.close()
return images
def pil_to_pdf_img2pdf(pil_images, output_path):
if not pil_images:
return
image_bytes_list = []
for img in pil_images:
if img.mode != "RGB":
img = img.convert("RGB")
img_buffer = io.BytesIO()
img.save(img_buffer, format="JPEG", quality=95)
image_bytes_list.append(img_buffer.getvalue())
try:
pdf_bytes = img2pdf.convert(image_bytes_list)
with open(output_path, "wb") as f:
f.write(pdf_bytes)
except Exception as e:
print(f"Error creating PDF: {e}")
def re_match(text):
pattern = r"(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)"
matches = re.findall(pattern, text, re.DOTALL)
mathes_image = [m[0] for m in matches if "<|ref|>image<|/ref|>" in m[0]]
mathes_other = [m[0] for m in matches if "<|ref|>image<|/ref|>" not in m[0]]
return matches, mathes_image, mathes_other
def extract_coordinates_and_label(ref_text, image_width, image_height):
try:
label_type = ref_text[1]
cor_list = eval(ref_text[2])
return (label_type, cor_list)
except Exception as e:
print(f"Error extracting coordinates: {e}")
return None
def draw_bounding_boxes(image, refs, jdx=None):
image_width, image_height = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
overlay = Image.new("RGBA", img_draw.size, (0, 0, 0, 0))
draw2 = ImageDraw.Draw(overlay)
font = ImageFont.load_default()
img_idx = 0
for i, ref in enumerate(refs):
result = extract_coordinates_and_label(ref, image_width, image_height)
if not result:
continue
label_type, points_list = result
color = (
np.random.randint(0, 200),
np.random.randint(0, 200),
np.random.randint(0, 255),
)
color_a = color + (20,)
for points in points_list:
x1, y1, x2, y2 = [
int(p / 999 * (image_width if i % 2 == 0 else image_height))
for i, p in enumerate(points)
]
if label_type == "image":
try:
cropped = image.crop((x1, y1, x2, y2))
img_filename = (
f"{jdx}_{img_idx}.jpg" if jdx is not None else f"{img_idx}.jpg"
)
cropped.save(
os.path.join(config.OUTPUT_PATH, "images", img_filename)
)
img_idx += 1
except Exception as e:
print(f"Error cropping image: {e}")
width = 4 if label_type == "title" else 2
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
draw2.rectangle(
[x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1
)
text_x, text_y = x1, max(0, y1 - 15)
text_bbox = draw.textbbox((0, 0), label_type, font=font)
text_width, text_height = (
text_bbox[2] - text_bbox[0],
text_bbox[3] - text_bbox[1],
)
draw.rectangle(
[text_x, text_y, text_x + text_width, text_y + text_height],
fill=(255, 255, 255, 30),
)
draw.text((text_x, text_y), label_type, font=font, fill=color)
img_draw.paste(overlay, (0, 0), overlay)
return img_draw
def process_image_with_refs(image, ref_texts, jdx=None):
return draw_bounding_boxes(image, ref_texts, jdx)
def load_image(image_path):
try:
image = Image.open(image_path).convert("RGB")
return ImageOps.exif_transpose(image)
except Exception as e:
print(f"Error loading image {image_path}: {e}")
return None
# --- Main OCR Processing Logic ---
def process_pdf(llm, sampling_params, pdf_path):
print(f"{Colors.GREEN}Processing PDF: {pdf_path}{Colors.RESET}")
base_name = os.path.basename(pdf_path)
file_name_without_ext = os.path.splitext(base_name)[0]
images = pdf_to_images_high_quality(pdf_path)
if not images:
print(
f"{Colors.YELLOW}Could not extract images from {pdf_path}. Skipping.{Colors.RESET}"
)
return
batch_inputs = []
processor = DeepseekOCRProcessor()
for image in tqdm(images, desc="Pre-processing PDF pages"):
batch_inputs.append(
{
"prompt": config.PROMPT,
"multi_modal_data": {
"image": processor.tokenize_with_images(
images=[image], bos=True, eos=True, cropping=config.CROP_MODE
)
},
}
)
start_time = time.time()
outputs_list = llm.generate(batch_inputs, sampling_params=sampling_params)
end_time = time.time()
contents_det = ""
contents = ""
draw_images = []
for i, (output, img) in enumerate(zip(outputs_list, images)):
content = output.outputs[0].text
if "<end of sentence>" in content:
content = content.replace("<end of sentence>", "")
elif config.SKIP_REPEAT:
continue
page_num_separator = "\n<--- Page Split --->\n"
contents_det += content + page_num_separator
matches_ref, matches_images, mathes_other = re_match(content)
result_image = process_image_with_refs(img.copy(), matches_ref, jdx=i)
draw_images.append(result_image)
for idx, match in enumerate(matches_images):
content = content.replace(match, f"![](images/{i}_{idx}.jpg)\n")
for match in mathes_other:
content = (
content.replace(match, "")
.replace("\\coloneqq", ":=")
.replace("\\eqqcolon", "=:")
.replace("\n\n\n", "\n\n")
)
contents += content + page_num_separator
# Save results
json_path = os.path.join(
f"{config.OUTPUT_PATH}/result", f"{file_name_without_ext}.json"
)
pdf_out_path = os.path.join(
config.OUTPUT_PATH, f"{file_name_without_ext}_layouts.pdf"
)
duration = end_time - start_time
output_data = {
"filename": base_name,
"model": {"ocr_model": "deepseek-ocr"},
"time": {
"duration_sec": f"{duration:.2f}",
"started_at": start_time,
"ended_at": end_time,
},
"parsed": contents,
}
with open(json_path, "w", encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
pil_to_pdf_img2pdf(draw_images, pdf_out_path)
print(
f"{Colors.GREEN}Finished processing {pdf_path}. Results saved in {config.OUTPUT_PATH}{Colors.RESET}"
)
def process_image(llm, sampling_params, image_path):
print(f"{Colors.GREEN}Processing Image: {image_path}{Colors.RESET}")
base_name = os.path.basename(image_path)
file_name_without_ext = os.path.splitext(base_name)[0]
image = load_image(image_path)
if image is None:
return
processor = DeepseekOCRProcessor()
image_features = processor.tokenize_with_images(
images=[image], bos=True, eos=True, cropping=config.CROP_MODE
)
request = {
"prompt": config.PROMPT,
"multi_modal_data": {"image": image_features},
}
start_time = time.time()
outputs = llm.generate([request], sampling_params)
end_time = time.time()
result_out = outputs[0].outputs[0].text
print(result_out)
# Save results
output_json_path = os.path.join(
f"{config.OUTPUT_PATH}/result", f"{file_name_without_ext}.json"
)
result_image_path = os.path.join(
config.OUTPUT_PATH, f"{file_name_without_ext}_result_with_boxes.jpg"
)
matches_ref, matches_images, mathes_other = re_match(result_out)
result_image = process_image_with_refs(image.copy(), matches_ref)
processed_text = result_out
for idx, match in enumerate(matches_images):
processed_text = processed_text.replace(match, f"![](images/{idx}.jpg)\n")
for match in mathes_other:
processed_text = (
processed_text.replace(match, "")
.replace("\\coloneqq", ":=")
.replace("\\eqqcolon", "=:")
.replace("\n\n\n", "\n\n")
)
duration = end_time - start_time
output_data = {
"filename": base_name,
"model": {"ocr_model": "deepseek-ocr"},
"time": {
"duration_sec": f"{duration:.2f}",
"started_at": start_time,
"ended_at": end_time,
},
"parsed": processed_text,
}
with open(output_json_path, "w", encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
result_image.save(result_image_path)
print(
f"{Colors.GREEN}Finished processing {image_path}. Results saved in {config.OUTPUT_PATH}{Colors.RESET}"
)
def main():
# --- Model Initialization ---
print(f"{Colors.BLUE}Initializing model...{Colors.RESET}")
llm = LLM(
model=config.MODEL_PATH,
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
block_size=256,
enforce_eager=False,
trust_remote_code=True,
max_model_len=8192,
swap_space=0,
max_num_seqs=config.MAX_CONCURRENCY,
tensor_parallel_size=1,
gpu_memory_utilization=0.9,
disable_mm_preprocessor_cache=True,
)
logits_processors = [
NoRepeatNGramLogitsProcessor(
ngram_size=20, window_size=50, whitelist_token_ids={128821, 128822}
)
]
sampling_params = SamplingParams(
temperature=0.0,
max_tokens=8192,
logits_processors=logits_processors,
skip_special_tokens=False,
include_stop_str_in_output=True,
)
print(f"{Colors.BLUE}Model initialized successfully.{Colors.RESET}")
# --- File Processing ---
input_dir = config.INPUT_PATH
output_dir = config.OUTPUT_PATH
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, "images"), exist_ok=True)
os.makedirs(os.path.join(output_dir, "result"), exist_ok=True)
if not os.path.isdir(input_dir):
print(
f"{Colors.RED}Error: Input directory not found at '{input_dir}'{Colors.RESET}"
)
return
print(f"Scanning for files in '{input_dir}'...")
for filename in sorted(os.listdir(input_dir)):
input_path = os.path.join(input_dir, filename)
if not os.path.isfile(input_path):
continue
file_extension = os.path.splitext(filename)[1].lower()
try:
if file_extension == ".pdf":
process_pdf(llm, sampling_params, input_path)
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"]:
process_image(llm, sampling_params, input_path)
else:
print(
f"{Colors.YELLOW}Skipping unsupported file type: {filename}{Colors.RESET}"
)
except Exception as e:
print(
f"{Colors.RED}An error occurred while processing {filename}: {e}{Colors.RESET}"
)
if __name__ == "__main__":
main()