Lint 적용

This commit is contained in:
kyy
2025-11-06 11:57:29 +09:00
parent f9975620cb
commit 2c3b417f3b
3 changed files with 155 additions and 82 deletions

View File

@@ -1,20 +1,25 @@
import logging
from fastapi import APIRouter, File, HTTPException, UploadFile
from services.ocr_engine import process_document
router = APIRouter(prefix="/ocr", tags=["OCR"])
logger = logging.getLogger(__name__)
@router.post("", description="요청된 파일에서 Deepseek OCR을 수행하고 텍스트를 추출합니다.")
async def perform_ocr(document: UploadFile = File(..., description="OCR을 수행할 PDF 또는 이미지 파일")):
@router.post(
"", description="요청된 파일에서 Deepseek OCR을 수행하고 텍스트를 추출합니다."
)
async def perform_ocr(
document: UploadFile = File(..., description="OCR을 수행할 PDF 또는 이미지 파일"),
):
"""
클라이언트로부터 받은 파일을 OCR 엔진에 전달하고, 추출된 텍스트를 반환합니다.
- **document**: `multipart/form-data` 형식으로 전송된 파일.
"""
logger.info(f"'{document.filename}' 파일에 대한 OCR 요청 수신 (Content-Type: {document.content_type})")
logger.info(
f"'{document.filename}' 파일에 대한 OCR 요청 수신 (Content-Type: {document.content_type})"
)
try:
file_content = await document.read()
@@ -36,6 +41,8 @@ async def perform_ocr(document: UploadFile = File(..., description="OCR을 수
except Exception as e:
# 예상치 못한 서버 내부 오류
logger.exception(f"OCR 처리 중 예상치 못한 오류 발생: {e}")
raise HTTPException(status_code=500, detail=f"서버 내부 오류가 발생했습니다: {e}")
raise HTTPException(
status_code=500, detail=f"서버 내부 오류가 발생했습니다: {e}"
)
finally:
await document.close()

View File

@@ -3,13 +3,21 @@ from typing import List, Tuple
import torch
import torchvision.transforms as T
from config.model_settings import (
BASE_SIZE,
IMAGE_SIZE,
MAX_CROPS,
MIN_CROPS,
PROMPT,
TOKENIZER,
)
from PIL import Image, ImageOps
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
from transformers import AutoProcessor, LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, MIN_CROPS, MAX_CROPS, PROMPT, TOKENIZER
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
@@ -25,37 +33,56 @@ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_
return best_ratio
def count_tiles(orig_width, orig_height, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
def count_tiles(
orig_width,
orig_height,
min_num=MIN_CROPS,
max_num=MAX_CROPS,
image_size=640,
use_thumbnail=False,
):
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
# print(target_ratios)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
return target_aspect_ratio
def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
def dynamic_preprocess(
image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
# print(target_ratios)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# print(target_aspect_ratio)
# calculate the target width and height
@@ -71,7 +98,7 @@ def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=6
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
@@ -83,15 +110,13 @@ def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=6
return processed_images, target_aspect_ratio
class ImageTransform:
def __init__(self,
mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True):
def __init__(
self,
mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True,
):
self.mean = mean
self.std = std
self.normalize = normalize
@@ -129,28 +154,28 @@ class DeepseekOCRProcessor(ProcessorMixin):
ignore_id: int = -100,
**kwargs,
):
# self.candidate_resolutions = candidate_resolutions # placeholder no use
self.image_size = IMAGE_SIZE
self.base_size = BASE_SIZE
# self.patch_size = patch_size
self.patch_size = 16
self.patch_size = 16
self.image_mean = image_mean
self.image_std = image_std
self.normalize = normalize
# self.downsample_ratio = downsample_ratio
self.downsample_ratio = 4
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
self.image_transform = ImageTransform(
mean=image_mean, std=image_std, normalize=normalize
)
self.tokenizer = tokenizer
# self.tokenizer = add_special_token(tokenizer)
self.tokenizer.padding_side = 'left' # must set thispadding side with make a difference in batch inference
self.tokenizer.padding_side = "left" # must set thispadding side with make a difference in batch inference
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': pad_token})
self.tokenizer.add_special_tokens({"pad_token": pad_token})
# add image token
# image_token_id = self.tokenizer.vocab.get(image_token)
@@ -186,9 +211,6 @@ class DeepseekOCRProcessor(ProcessorMixin):
**kwargs,
)
# def select_best_resolution(self, image_size):
# # used for cropping
# original_width, original_height = image_size
@@ -264,13 +286,21 @@ class DeepseekOCRProcessor(ProcessorMixin):
- num_image_tokens (List[int]): the number of image tokens
"""
assert (prompt is not None and images is not None
), "prompt and images must be used at the same time."
assert (
prompt is not None and images is not None
), "prompt and images must be used at the same time."
sft_format = prompt
input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, _ = images[0]
(
input_ids,
pixel_values,
images_crop,
images_seq_mask,
images_spatial_crop,
num_image_tokens,
_,
) = images[0]
return {
"input_ids": input_ids,
@@ -281,7 +311,6 @@ class DeepseekOCRProcessor(ProcessorMixin):
"num_image_tokens": num_image_tokens,
}
# prepare = BatchFeature(
# data=dict(
# input_ids=input_ids,
@@ -341,7 +370,12 @@ class DeepseekOCRProcessor(ProcessorMixin):
conversation = PROMPT
assert conversation.count(self.image_token) == len(images)
text_splits = conversation.split(self.image_token)
images_list, images_crop_list, images_seq_mask, images_spatial_crop = [], [], [], []
images_list, images_crop_list, images_seq_mask, images_spatial_crop = (
[],
[],
[],
[],
)
image_shapes = []
num_image_tokens = []
tokenized_str = []
@@ -368,7 +402,9 @@ class DeepseekOCRProcessor(ProcessorMixin):
# best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
# print('image ', image.size)
# print('open_size:', image.size)
images_crop_raw, crop_ratio = dynamic_preprocess(image, image_size=IMAGE_SIZE)
images_crop_raw, crop_ratio = dynamic_preprocess(
image, image_size=IMAGE_SIZE
)
# print('crop_ratio: ', crop_ratio)
else:
# best_width, best_height = self.image_size, self.image_size
@@ -383,8 +419,11 @@ class DeepseekOCRProcessor(ProcessorMixin):
# print('directly resize')
image = image.resize((self.image_size, self.image_size))
global_view = ImageOps.pad(image, (self.base_size, self.base_size),
color=tuple(int(x * 255) for x in self.image_transform.mean))
global_view = ImageOps.pad(
image,
(self.base_size, self.base_size),
color=tuple(int(x * 255) for x in self.image_transform.mean),
)
images_list.append(self.image_transform(global_view))
"""record height / width crop num"""
@@ -392,9 +431,6 @@ class DeepseekOCRProcessor(ProcessorMixin):
num_width_tiles, num_height_tiles = crop_ratio
images_spatial_crop.append([num_width_tiles, num_height_tiles])
if num_width_tiles > 1 or num_height_tiles > 1:
"""process the local views"""
# local_view = ImageOps.pad(image, (best_width, best_height),
@@ -421,15 +457,22 @@ class DeepseekOCRProcessor(ProcessorMixin):
# """add image tokens"""
"""add image tokens"""
num_queries = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
num_queries_base = math.ceil((self.base_size // self.patch_size) / self.downsample_ratio)
num_queries = math.ceil(
(self.image_size // self.patch_size) / self.downsample_ratio
)
num_queries_base = math.ceil(
(self.base_size // self.patch_size) / self.downsample_ratio
)
tokenized_image = ([self.image_token_id] * num_queries_base + [self.image_token_id]) * num_queries_base
tokenized_image = (
[self.image_token_id] * num_queries_base + [self.image_token_id]
) * num_queries_base
tokenized_image += [self.image_token_id]
if num_width_tiles > 1 or num_height_tiles > 1:
tokenized_image += ([self.image_token_id] * (num_queries * num_width_tiles) + [self.image_token_id]) * (
num_queries * num_height_tiles)
tokenized_image += (
[self.image_token_id] * (num_queries * num_width_tiles)
+ [self.image_token_id]
) * (num_queries * num_height_tiles)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
num_image_tokens.append(len(tokenized_image))
@@ -447,10 +490,9 @@ class DeepseekOCRProcessor(ProcessorMixin):
tokenized_str = tokenized_str + [self.eos_id]
images_seq_mask = images_seq_mask + [False]
assert len(tokenized_str) == len(
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
assert (
len(tokenized_str) == len(images_seq_mask)
), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
masked_tokenized_str = []
for token_index in tokenized_str:
@@ -459,17 +501,21 @@ class DeepseekOCRProcessor(ProcessorMixin):
else:
masked_tokenized_str.append(self.ignore_id)
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
assert (
len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
), (
f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal"
)
input_ids = torch.LongTensor(tokenized_str)
target_ids = torch.LongTensor(masked_tokenized_str)
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
target_ids[(input_ids < 0) |
(input_ids == self.image_token_id)] = self.ignore_id
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
self.ignore_id
)
input_ids[input_ids < 0] = self.pad_id
inference_mode = True
@@ -484,19 +530,32 @@ class DeepseekOCRProcessor(ProcessorMixin):
if len(images_list) == 0:
pixel_values = torch.zeros((1, 3, self.base_size, self.base_size))
images_spatial_crop = torch.zeros((1, 1), dtype=torch.long)
images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)
images_crop = torch.zeros(
(1, 3, self.image_size, self.image_size)
).unsqueeze(0)
else:
pixel_values = torch.stack(images_list, dim=0)
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
if images_crop_list:
images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0)
else:
images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)
images_crop = torch.zeros(
(1, 3, self.image_size, self.image_size)
).unsqueeze(0)
input_ids = input_ids.unsqueeze(0)
return [[input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, image_shapes]]
return [
[
input_ids,
pixel_values,
images_crop,
images_seq_mask,
images_spatial_crop,
num_image_tokens,
image_shapes,
]
]
AutoProcessor.register("DeepseekVLV2Processor", DeepseekOCRProcessor)

View File

@@ -1,40 +1,47 @@
from typing import List
import torch
from transformers import LogitsProcessor
from transformers.generation.logits_process import _calc_banned_ngram_tokens
from typing import List, Set
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
def __init__(self, ngram_size: int, window_size: int = 100, whitelist_token_ids: set = None):
def __init__(
self, ngram_size: int, window_size: int = 100, whitelist_token_ids: set = None
):
if not isinstance(ngram_size, int) or ngram_size <= 0:
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
raise ValueError(
f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}"
)
if not isinstance(window_size, int) or window_size <= 0:
raise ValueError(f"`window_size` has to be a strictly positive integer, but is {window_size}")
raise ValueError(
f"`window_size` has to be a strictly positive integer, but is {window_size}"
)
self.ngram_size = ngram_size
self.window_size = window_size
self.whitelist_token_ids = whitelist_token_ids or set()
def __call__(self, input_ids: List[int], scores: torch.FloatTensor) -> torch.FloatTensor:
def __call__(
self, input_ids: List[int], scores: torch.FloatTensor
) -> torch.FloatTensor:
if len(input_ids) < self.ngram_size:
return scores
current_prefix = tuple(input_ids[-(self.ngram_size - 1):])
current_prefix = tuple(input_ids[-(self.ngram_size - 1) :])
search_start = max(0, len(input_ids) - self.window_size)
search_end = len(input_ids) - self.ngram_size + 1
banned_tokens = set()
for i in range(search_start, search_end):
ngram = tuple(input_ids[i:i + self.ngram_size])
ngram = tuple(input_ids[i : i + self.ngram_size])
if ngram[:-1] == current_prefix:
banned_tokens.add(ngram[-1])
banned_tokens = banned_tokens - self.whitelist_token_ids
if banned_tokens:
scores = scores.clone()
for token in banned_tokens:
scores[token] = -float("inf")
return scores
return scores