4.8 KiB
4.8 KiB
我们提供了多样化的大模型微调示例脚本。
请确保在 LLaMA-Factory 目录下执行下述命令。
目录
示例
单 GPU LoRA 微调
(增量)预训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml指令监督微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml多模态指令监督微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml奖励模型训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yamlPPO 训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yamlDPO 训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yamlORPO 训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml预处理数据集
对于大数据集有帮助,在配置中使用 tokenized_path
以加载预处理后的数据集。
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml在 MMLU/CMMLU/C-Eval 上评估
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml批量预测并计算 BLEU 和 ROUGE 分数
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml单 GPU QLoRA 微调
基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml基于 4/8 比特 GPTQ 量化进行指令监督微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml基于 4 比特 AWQ 量化进行指令监督微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml基于 2 比特 AQLM 量化进行指令监督微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml多 GPU LoRA 微调
使用 Accelerate 进行单节点训练
bash examples/lora_multi_gpu/single_node.sh使用 Accelerate 进行多节点训练
bash examples/lora_multi_gpu/multi_node.sh使用 DeepSpeed ZeRO-3 平均分配显存
bash examples/lora_multi_gpu/ds_zero3.sh多 GPU 全参数微调
使用 DeepSpeed 进行单节点训练
bash examples/full_multi_gpu/single_node.sh使用 DeepSpeed 进行多节点训练
bash examples/full_multi_gpu/multi_node.sh批量预测并计算 BLEU 和 ROUGE 分数
bash examples/full_multi_gpu/predict.sh合并 LoRA 适配器与模型量化
合并 LoRA 适配器
注:请勿使用量化后的模型或 quantization_bit 参数来合并
LoRA 适配器。
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml使用 AutoGPTQ 量化模型
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml推理 LoRA 模型
使用命令行接口
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/merge_lora/llama3_lora_sft.yaml使用浏览器界面
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/merge_lora/llama3_lora_sft.yaml启动 OpenAI 风格 API
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/merge_lora/llama3_lora_sft.yaml杂项
使用 GaLore 进行全参数训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml使用 BAdam 进行全参数训练
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yamlLoRA+ 微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml深度混合微调
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yamlLLaMA-Pro 微调
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yamlFSDP+QLoRA 微调
bash examples/extras/fsdp_qlora/single_node.sh