2025-02-19 15:05:26 +09:00
2025-02-19 14:44:15 +09:00
2025-02-19 14:44:15 +09:00
2025-02-19 14:44:15 +09:00
2024-12-05 10:17:26 +00:00
2024-12-05 10:37:42 +00:00
2024-11-02 18:31:04 +08:00
2024-11-01 08:41:54 +00:00
2025-02-19 14:44:15 +09:00
2025-02-19 14:44:15 +09:00
2024-11-02 12:41:44 +08:00
2025-02-19 15:05:26 +09:00
2024-11-27 05:24:58 +00:00
2024-12-04 13:50:00 +00:00

Table of Contents

Supported Models

Model Model size Template
Baichuan 2 7B/13B baichuan2
BLOOM/BLOOMZ 560M/1.1B/1.7B/3B/7.1B/176B -
ChatGLM3 6B chatglm3
Command R 35B/104B cohere
DeepSeek (Code/MoE) 7B/16B/67B/236B deepseek
Falcon 7B/11B/40B/180B falcon
Gemma/Gemma 2/CodeGemma 2B/7B/9B/27B gemma
GLM-4 9B glm4
Index 1.9B index
InternLM2/InternLM2.5 7B/20B intern2
Llama 7B/13B/33B/65B -
Llama 2 7B/13B/70B llama2
Llama 3-3.2 1B/3B/8B/70B llama3
Llama 3.2 Vision 11B/90B mllama
LLaVA-1.5 7B/13B llava
LLaVA-NeXT 7B/8B/13B/34B/72B/110B llava_next
LLaVA-NeXT-Video 7B/34B llava_next_video
MiniCPM 1B/2B/4B cpm/cpm3
Mistral/Mixtral 7B/8x7B/8x22B mistral
OLMo 1B/7B -
PaliGemma 3B paligemma
Phi-1.5/Phi-2 1.3B/2.7B -
Phi-3 4B/14B phi
Phi-3-small 7B phi_small
Pixtral 12B pixtral
Qwen/QwQ (1-2.5) (Code/Math/MoE) 0.5B/1.5B/3B/7B/14B/32B/72B/110B qwen
Qwen2-VL 2B/7B/72B qwen2_vl
Skywork o1 8B skywork_o1
StarCoder 2 3B/7B/15B -
XVERSE 7B/13B/65B xverse
Yi/Yi-1.5 (Code) 1.5B/6B/9B/34B yi
Yi-VL 6B/34B yi_vl
Yuan 2 2B/51B/102B yuan

Supported Training Approaches

Approach Full-tuning Freeze-tuning LoRA QLoRA
Pre-Training
Supervised Fine-Tuning
Reward Modeling
PPO Training
DPO Training
KTO Training
ORPO Training
SimPO Training

Tip

일부 모델델은 사용 전에 승인이 필요하므로, Hugging Face 계정으로 로그인하는 것을 추천드립니다.

pip install --upgrade huggingface_hub
huggingface-cli login

Requirement

Mandatory Minimum Recommend
python 3.8 3.11
torch 1.13.1 2.4.0
transformers 4.41.2 4.43.4
datasets 2.16.0 2.20.0
accelerate 0.30.1 0.32.0
peft 0.11.1 0.12.0
trl 0.8.6 0.9.6
Optional Minimum Recommend
CUDA 11.6 12.2
deepspeed 0.10.0 0.14.0
bitsandbytes 0.39.0 0.43.1
vllm 0.4.3 0.5.0
flash-attn 2.3.0 2.6.3

Hardware Requirement

* estimated

Method Bits 7B 13B 30B 70B 110B 8x7B 8x22B
Full AMP 120GB 240GB 600GB 1200GB 2000GB 900GB 2400GB
Full 16 60GB 120GB 300GB 600GB 900GB 400GB 1200GB
Freeze 16 20GB 40GB 80GB 200GB 360GB 160GB 400GB
LoRA/GaLore/BAdam 16 16GB 32GB 64GB 160GB 240GB 120GB 320GB
QLoRA 8 10GB 20GB 40GB 80GB 140GB 60GB 160GB
QLoRA 4 6GB 12GB 24GB 48GB 72GB 30GB 96GB
QLoRA 2 4GB 8GB 16GB 24GB 48GB 18GB 48GB

Getting Started

Build Docker

For CUDA users:

cd docker/docker-cuda/
docker compose up -d
docker compose exec llamafactory bash

Installation

Important

Installation is mandatory.

git clone --depth 1 http://172.16.10.175:2230/kyy/llm_trainer.git
cd llm_trainer
pip install -e ".[torch,metrics]"

Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, quality

Data Preparation

HuggingFace, ModelScope, Modelers 허브에서 제공하는 데이터셋을 사용하거나, 로컬 디스크에서 데이터셋을 로드할 수 있습니다.

Note

Please update data/dataset_info.json to use your custom dataset.

SFT Start

sh run_train/run_sft.sh

PT Start

sh run_train/run_pt.sh
Description
No description provided
Readme 232 MiB
Languages
Python 99.7%
Shell 0.3%