modity code structure
This commit is contained in:
94
src/llmtuner/tuner/sft/workflow.py
Normal file
94
src/llmtuner/tuner/sft/workflow.py
Normal file
@@ -0,0 +1,94 @@
|
||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
|
||||
|
||||
from typing import Optional, List
|
||||
from transformers import Seq2SeqTrainingArguments, DataCollatorForSeq2Seq, TrainerCallback
|
||||
|
||||
from llmtuner.dsets import get_dataset, preprocess_dataset
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
from llmtuner.extras.constants import IGNORE_INDEX
|
||||
from llmtuner.extras.misc import get_logits_processor
|
||||
from llmtuner.extras.ploting import plot_loss
|
||||
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
|
||||
from llmtuner.tuner.core import load_model_and_tokenizer
|
||||
from llmtuner.tuner.sft.metric import ComputeMetrics
|
||||
from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer
|
||||
|
||||
|
||||
def run_sft(
|
||||
model_args: ModelArguments,
|
||||
data_args: DataArguments,
|
||||
training_args: Seq2SeqTrainingArguments,
|
||||
finetuning_args: FinetuningArguments,
|
||||
callbacks: Optional[List[TrainerCallback]] = [LogCallback()]
|
||||
):
|
||||
dataset = get_dataset(model_args, data_args)
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft")
|
||||
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft")
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer=tokenizer,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length if \
|
||||
training_args.generation_max_length is not None else data_args.max_target_length
|
||||
training_args.generation_num_beams = data_args.eval_num_beams if \
|
||||
data_args.eval_num_beams is not None else training_args.generation_num_beams
|
||||
|
||||
# Split the dataset
|
||||
if training_args.do_train:
|
||||
if data_args.dev_ratio > 1e-6:
|
||||
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
|
||||
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
||||
else:
|
||||
trainer_kwargs = {"train_dataset": dataset}
|
||||
else: # do_eval or do_predict
|
||||
trainer_kwargs = {"eval_dataset": dataset}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqPeftTrainer(
|
||||
finetuning_args=finetuning_args,
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
**trainer_kwargs
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = {
|
||||
"do_sample": True,
|
||||
"top_p": 0.7,
|
||||
"max_new_tokens": data_args.max_target_length + 1,
|
||||
"temperature": 0.95,
|
||||
"logits_processor": get_logits_processor()
|
||||
}
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
trainer.save_model()
|
||||
if trainer.is_world_process_zero() and model_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
metrics.pop("eval_loss", None)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results.metrics.pop("predict_loss", None)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
Reference in New Issue
Block a user