update api and support abort eval in webui

This commit is contained in:
hiyouga
2024-05-04 15:59:15 +08:00
parent d4283bb6bf
commit ed8f8be752
11 changed files with 277 additions and 192 deletions

View File

@@ -1,36 +1,29 @@
import json
import os
from contextlib import asynccontextmanager
from typing import Any, Dict, Sequence
from pydantic import BaseModel
from typing import Annotated, Optional
from ..chat import ChatModel
from ..data import Role as DataRole
from ..extras.misc import torch_gc
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
from .chat import (
create_chat_completion_response,
create_score_evaluation_response,
create_stream_chat_completion_response,
)
from .protocol import (
ChatCompletionMessage,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage,
ChatCompletionStreamResponse,
Finish,
Function,
FunctionCall,
ModelCard,
ModelList,
Role,
ScoreEvaluationRequest,
ScoreEvaluationResponse,
)
if is_fastapi_availble():
from fastapi import FastAPI, HTTPException, status
from fastapi import Depends, FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
if is_starlette_available():
@@ -47,23 +40,8 @@ async def lifespan(app: "FastAPI"): # collects GPU memory
torch_gc()
def dictify(data: "BaseModel") -> Dict[str, Any]:
try: # pydantic v2
return data.model_dump(exclude_unset=True)
except AttributeError: # pydantic v1
return data.dict(exclude_unset=True)
def jsonify(data: "BaseModel") -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except AttributeError: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False)
def create_app(chat_model: "ChatModel") -> "FastAPI":
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
@@ -71,161 +49,58 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
allow_methods=["*"],
allow_headers=["*"],
)
api_key = os.environ.get("API_KEY", None)
security = HTTPBearer(auto_error=False)
role_mapping = {
Role.USER: DataRole.USER.value,
Role.ASSISTANT: DataRole.ASSISTANT.value,
Role.SYSTEM: DataRole.SYSTEM.value,
Role.FUNCTION: DataRole.FUNCTION.value,
Role.TOOL: DataRole.OBSERVATION.value,
}
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
if api_key and (auth is None or auth.credentials != api_key):
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
@app.get("/v1/models", response_model=ModelList)
@app.get(
"/v1/models",
response_model=ModelList,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
@app.post(
"/v1/chat/completions",
response_model=ChatCompletionResponse,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def create_chat_completion(request: ChatCompletionRequest):
if not chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
if request.messages[0].role == Role.SYSTEM:
system = request.messages.pop(0).content
else:
system = ""
if len(request.messages) % 2 == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
input_messages = []
for i, message in enumerate(request.messages):
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
name = message.tool_calls[0].function.name
arguments = message.tool_calls[0].function.arguments
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
input_messages.append({"role": role_mapping[Role.FUNCTION], "content": content})
else:
input_messages.append({"role": role_mapping[message.role], "content": message.content})
tool_list = request.tools
if isinstance(tool_list, list) and len(tool_list):
try:
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
except Exception:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
else:
tools = ""
if request.stream:
if tools:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
generate = stream_chat_completion(input_messages, system, tools, request)
generate = create_stream_chat_completion_response(request, chat_model)
return EventSourceResponse(generate, media_type="text/event-stream")
else:
return await create_chat_completion_response(request, chat_model)
responses = await chat_model.achat(
input_messages,
system,
tools,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
num_return_sequences=request.n,
)
prompt_length, response_length = 0, 0
choices = []
for i, response in enumerate(responses):
if tools:
result = chat_model.engine.template.format_tools.extract(response.response_text)
else:
result = response.response_text
if isinstance(result, tuple):
name, arguments = result
function = Function(name=name, arguments=arguments)
response_message = ChatCompletionMessage(
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)]
)
finish_reason = Finish.TOOL
else:
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
choices.append(
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)
)
prompt_length = response.prompt_length
response_length += response.response_length
usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length,
completion_tokens=response_length,
total_tokens=prompt_length + response_length,
)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
async def stream_chat_completion(
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
):
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
async for new_token in chat_model.astream_chat(
messages,
system,
tools,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
):
if len(new_token) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(content=new_token), finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
yield "[DONE]"
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
@app.post(
"/v1/score/evaluation",
response_model=ScoreEvaluationResponse,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def create_score_evaluation(request: ScoreEvaluationRequest):
if chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
return ScoreEvaluationResponse(model=request.model, scores=scores)
return await create_score_evaluation_response(request, chat_model)
return app
def run_api():
def run_api() -> None:
chat_model = ChatModel()
app = create_app(chat_model)
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
api_host = os.environ.get("API_HOST", "0.0.0.0")
api_port = int(os.environ.get("API_PORT", "8000"))
print("Visit http://localhost:{}/docs for API document.".format(api_port))
uvicorn.run(app, host=api_host, port=api_port)