fix layer norm dtype
This commit is contained in:
@@ -128,10 +128,6 @@ def load_model_and_tokenizer(
|
||||
else:
|
||||
logger.warning("Current model does not support RoPE scaling.")
|
||||
|
||||
# Fix RMSNorm in fp32 weight (https://github.com/huggingface/transformers/pull/23535)
|
||||
if getattr(config, "model_type", None) == "llama":
|
||||
LlamaModule.LlamaRMSNorm = LlamaPatches.LlamaRMSNorm
|
||||
|
||||
# Set FlashAttention-2
|
||||
if model_args.flash_attn:
|
||||
if getattr(config, "model_type", None) == "llama":
|
||||
@@ -205,7 +201,8 @@ def load_model_and_tokenizer(
|
||||
tokenizer.__class__.register_for_auto_class()
|
||||
|
||||
# Initialize adapters
|
||||
model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model
|
||||
if is_trainable:
|
||||
model = prepare_model_for_training(model, model_args.layernorm_dtype, finetuning_args.finetuning_type)
|
||||
model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
|
||||
model = model.train() if is_trainable else model.eval()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user