support BLOOM models
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
# coding=utf-8
|
||||
# Implements several parameter-efficient supervised fine-tuning method for LLaMA.
|
||||
# Implements several parameter-efficient supervised fine-tuning method.
|
||||
# This code is inspired by
|
||||
# https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
|
||||
|
||||
@@ -9,8 +9,8 @@ from utils import (
|
||||
prepare_args,
|
||||
prepare_data,
|
||||
preprocess_data,
|
||||
DataCollatorForLLaMA,
|
||||
Seq2SeqTrainerForLLaMA,
|
||||
DynamicDataCollatorWithPadding,
|
||||
Seq2SeqPeftTrainer,
|
||||
ComputeMetrics,
|
||||
LogCallback,
|
||||
get_logits_processor,
|
||||
@@ -25,7 +25,7 @@ def main():
|
||||
dataset = prepare_data(model_args, data_args)
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="sft")
|
||||
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="sft")
|
||||
data_collator = DataCollatorForLLaMA(tokenizer, model, data_args.ignore_pad_token_for_loss)
|
||||
data_collator = DynamicDataCollatorWithPadding(tokenizer, model, data_args.ignore_pad_token_for_loss)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length if \
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
trainer_kwargs = {"eval_dataset": dataset}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainerForLLaMA(
|
||||
trainer = Seq2SeqPeftTrainer(
|
||||
finetuning_args=finetuning_args,
|
||||
model=model,
|
||||
args=training_args,
|
||||
|
||||
Reference in New Issue
Block a user