lazy image load

This commit is contained in:
hiyouga
2024-09-04 02:27:08 +08:00
parent 59d2b31e96
commit 47ea97fb1b
19 changed files with 353 additions and 366 deletions

View File

@@ -1,5 +1,6 @@
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
from PIL.Image import Image
from transformers import ProcessorMixin
@@ -9,34 +10,53 @@ from ..extras.packages import is_pillow_available
if is_pillow_available():
import torch
from PIL import Image
from PIL.Image import Image as ImageObject
if TYPE_CHECKING:
from PIL.Image import Image as ImageObject
import torch
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
class EncodedImage(TypedDict):
path: Optional[str]
bytes: Optional[bytes]
def _regularize_images(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> List["ImageObject"]:
ImageInput = Union[str, EncodedImage, ImageObject]
def _regularize_images(images: Sequence["ImageInput"], processor: "ProcessorMixin") -> List["ImageObject"]:
r"""
Regularizes images to avoid error. Including resizing and mode convert.
Regularizes images to avoid error. Including reading, resizing and converting.
"""
images = images[:]
image_resolution = getattr(processor, "image_resolution", 512)
for i in range(len(images)):
if max(images[i].width, images[i].height) > image_resolution:
factor = image_resolution / max(images[i].width, images[i].height)
images[i] = images[i].resize((int(images[i].width * factor), int(images[i].height * factor)))
results = []
for image in images:
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, dict):
if image["bytes"] is not None:
image = Image.open(BytesIO(image["bytes"]))
else:
image = Image.open(image["path"])
if images[i].mode != "RGB":
images[i] = images[i].convert("RGB")
if not isinstance(image, ImageObject):
raise ValueError("Expect input is a list of Images, but got {}.".format(type(image)))
return images
if max(image.width, image.height) > image_resolution:
factor = image_resolution / max(image.width, image.height)
image = image.resize((int(image.width * factor), int(image.height * factor)))
if image.mode != "RGB":
image = image.convert("RGB")
results.append(image)
return results
def _get_mm_inputs(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
def _get_mm_inputs(images: Sequence["ImageInput"], processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs.
@@ -53,26 +73,27 @@ def _get_mm_inputs(images: Sequence["ImageObject"], processor: "ProcessorMixin")
if len(images) != 0:
images = _regularize_images(images, processor)
image_inputs = image_processor(images=images, return_tensors="pt")
else: # add NoneType for fake images
image = Image.new("RGB", (64, 64), (255, 255, 255))
image_inputs = image_processor(images=[image], return_tensors="pt")
image_inputs = {key: None for key in image_inputs.keys()}
else:
image_inputs = {}
return image_inputs
def _get_paligemma_token_type_ids(
images: Sequence["ImageObject"], input_len: int, processor: "ProcessorMixin"
imglens: Sequence[int], seqlens: Sequence[int], processor: "ProcessorMixin"
) -> List[List[int]]:
r"""
Gets paligemma token type ids for computing loss.
Returns:
token_type_ids: shape (1, seq_len)
batch_token_type_ids: shape (batch_size, sequence_length)
"""
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen")
return [[0] * image_seqlen + [1] * (input_len - image_seqlen)]
batch_token_type_ids = []
for imglen, seqlen in zip(imglens, seqlens):
image_seqlen = imglen * getattr(processor, "image_seqlen")
batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen))
return batch_token_type_ids
class BasePlugin:
@@ -82,7 +103,7 @@ class BasePlugin:
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
@@ -94,7 +115,7 @@ class BasePlugin:
self,
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
@@ -105,10 +126,11 @@ class BasePlugin:
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
images: Sequence["ImageInput"],
imglens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
r"""
Builds batched multimodal inputs for VLMs.
"""
@@ -119,31 +141,32 @@ class LlavaPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
num_images = 0
num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen")
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_images += 1
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", self.image_token * image_seqlen)
if len(images) != num_images:
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
images: Sequence["ImageInput"],
imglens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
return _get_mm_inputs(images, processor)
@@ -151,20 +174,20 @@ class PaliGemmaPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
num_images = 0
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_images += 1
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", "")
if len(images) != num_images:
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@@ -173,7 +196,7 @@ class PaliGemmaPlugin(BasePlugin):
self,
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
@@ -188,14 +211,13 @@ class PaliGemmaPlugin(BasePlugin):
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
images: Sequence["ImageInput"],
imglens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
mm_inputs = _get_mm_inputs(images, processor)
for feature_name, feature_length in feature_seqlens.items():
mm_inputs[feature_name] = _get_paligemma_token_type_ids(images, feature_length, processor)
mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
return mm_inputs
@@ -203,7 +225,7 @@ class Qwen2vlPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
images: Sequence["ImageInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
@@ -213,36 +235,37 @@ class Qwen2vlPlugin(BasePlugin):
else:
image_grid_thw = []
num_images = 0
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if num_images >= len(image_grid_thw):
if num_image_tokens >= len(image_grid_thw):
raise ValueError("`len(images)` is less than the number of {} tokens.".format(IMAGE_PLACEHOLDER))
content = content.replace(
IMAGE_PLACEHOLDER,
"<|vision_start|>{}<|vision_end|>".format(
self.image_token * (image_grid_thw[num_images].prod() // merge_length)
self.image_token * (image_grid_thw[num_image_tokens].prod() // merge_length)
),
1,
)
num_images += 1
num_image_tokens += 1
message["content"] = content
if len(images) != num_images:
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
images: Sequence["ImageInput"],
imglens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
return _get_mm_inputs(images, processor)