refactor adapter hparam

This commit is contained in:
hiyouga
2023-12-15 20:53:11 +08:00
parent d4c351f1ec
commit 0716f5e470
21 changed files with 302 additions and 311 deletions

View File

@@ -0,0 +1,94 @@
import math
import torch
from types import MethodType
from typing import TYPE_CHECKING
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import infer_optim_dtype
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments
logger = get_logger(__name__)
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
setattr(config, "torch_dtype", model_args.compute_dtype)
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
if model_args.rope_scaling is not None:
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
else:
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
# Set shift short attention (S^2-Attn)
if is_trainable and model_args.shift_attn:
logger.warning("Shift short attention is temporarily invalid due to breaking changes.")
# if getattr(config, "model_type", None) == "llama":
# setattr(config, "group_size_ratio", 0.25)
# logger.info("Using shift short attention with group_size_ratio=1/4.")
# else:
# logger.warning("Current model does not support shift short attention.")
def patch_model(model: "PreTrainedModel"):
if "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
if getattr(model.config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead"):
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
return self.pretrained_model.get_input_embeddings()
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizerBase"):
if "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()