refactor adapter hparam
This commit is contained in:
94
src/llmtuner/model/patches.py
Normal file
94
src/llmtuner/model/patches.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import math
|
||||
import torch
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
||||
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.misc import infer_optim_dtype
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
from llmtuner.hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||
|
||||
if getattr(config, "model_type", None) == "qwen":
|
||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
|
||||
|
||||
if model_args.rope_scaling is not None:
|
||||
if not hasattr(config, "rope_scaling"):
|
||||
logger.warning("Current model does not support RoPE scaling.")
|
||||
else:
|
||||
if is_trainable:
|
||||
if model_args.rope_scaling == "dynamic":
|
||||
logger.warning(
|
||||
"Dynamic NTK may not work well with fine-tuning. "
|
||||
"See: https://github.com/huggingface/transformers/pull/24653"
|
||||
)
|
||||
|
||||
current_max_length = getattr(config, "max_position_embeddings", None)
|
||||
if current_max_length and model_args.model_max_length > current_max_length:
|
||||
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
else:
|
||||
logger.warning("Input length is smaller than max length. Consider increase input length.")
|
||||
scaling_factor = 1.0
|
||||
else:
|
||||
scaling_factor = 2.0
|
||||
|
||||
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
|
||||
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
|
||||
model_args.rope_scaling, scaling_factor
|
||||
))
|
||||
|
||||
# Set shift short attention (S^2-Attn)
|
||||
if is_trainable and model_args.shift_attn:
|
||||
logger.warning("Shift short attention is temporarily invalid due to breaking changes.")
|
||||
# if getattr(config, "model_type", None) == "llama":
|
||||
# setattr(config, "group_size_ratio", 0.25)
|
||||
# logger.info("Using shift short attention with group_size_ratio=1/4.")
|
||||
# else:
|
||||
# logger.warning("Current model does not support shift short attention.")
|
||||
|
||||
|
||||
def patch_model(model: "PreTrainedModel"):
|
||||
if "GenerationMixin" not in str(model.generate.__func__):
|
||||
model.generate = MethodType(PreTrainedModel.generate, model)
|
||||
|
||||
if getattr(model.config, "model_type", None) == "chatglm":
|
||||
setattr(model, "lm_head", model.transformer.output_layer)
|
||||
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
||||
|
||||
|
||||
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead"):
|
||||
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
|
||||
return self.pretrained_model.get_input_embeddings()
|
||||
|
||||
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
|
||||
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
|
||||
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
|
||||
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
|
||||
|
||||
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
|
||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
|
||||
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizerBase"):
|
||||
if "AutoConfig" in getattr(config, "auto_map", {}):
|
||||
config.__class__.register_for_auto_class()
|
||||
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
|
||||
model.__class__.register_for_auto_class()
|
||||
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
|
||||
tokenizer.__class__.register_for_auto_class()
|
||||
Reference in New Issue
Block a user