Add PKL storage and CSV conversion

This commit is contained in:
kyy
2025-01-09 16:30:41 +09:00
parent dcdc3157c3
commit 9aab12ed50

View File

@@ -26,13 +26,11 @@ logger = logging.getLogger(__name__)
# FastAPI 엔드포인트: CSV 파일 및 모델 리스트 업로드 처리
@app.post("/start-inference/")
async def process_csv(input_csv: UploadFile, model_list_txt: UploadFile, background_tasks: BackgroundTasks):
# 파일 형식 확인
if not input_csv.filename.endswith(".csv"):
return JSONResponse(content={"error": "Uploaded file is not a CSV."}, status_code=400)
if not model_list_txt.filename.endswith(".txt"):
return JSONResponse(content={"error": "Uploaded model list is not a TXT file."}, status_code=400)
# 파일 저장
file_path = f"uploaded/{input_csv.filename}"
model_list_path = f"uploaded/{model_list_txt.filename}"
os.makedirs("uploaded", exist_ok=True)
@@ -45,7 +43,6 @@ async def process_csv(input_csv: UploadFile, model_list_txt: UploadFile, backgro
logger.info(f"Files uploaded: {file_path}, {model_list_path}")
# 작업 큐에 추가
job = queue.enqueue(run_inference, file_path, model_list_path, job_timeout=1800)
logger.info(f"Job enqueued: {job.id}")
return {"job_id": job.id, "status": "queued"}
@@ -74,6 +71,7 @@ def delete_csv_file(file_path: str):
except Exception as e:
logger.error(f"Error deleting CSV file: {e}")
# 모델 템플릿 적용
def chat_formating(input_sentence: str, model_name: str):
try:
if "llama" in model_name:
@@ -94,14 +92,12 @@ def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
try:
logger.info(f"Starting inference for file: {file_path} using models from {model_list_path}")
# 모델 리스트 읽기
with open(model_list_path, "r") as f:
model_list = [line.strip() for line in f.readlines()]
if not model_list:
raise ValueError("The model list file is empty.")
# CSV 읽기
try:
df = pd.read_csv(file_path, encoding="euc-kr")
except Exception as e:
@@ -111,10 +107,8 @@ def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
if "input" not in df.columns:
raise ValueError("The input CSV must contain a column named 'input'.")
# 에러 발생한 행 저장용 DataFrame 초기화
error_rows = pd.DataFrame(columns=df.columns)
# 각 모델로 추론
for model in model_list:
model_name = model.split("/")[-1]
try:
@@ -128,7 +122,6 @@ def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
sampling_params = SamplingParams(max_tokens=50, temperature=0.7, top_p=0.9, top_k=50)
# 추론 수행
responses = []
for i in tqdm(range(0, len(df), batch_size), desc=f"Processing {model}"):
batch = df.iloc[i:i+batch_size]
@@ -146,21 +139,18 @@ def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
batch_responses.append(None)
responses.extend(batch_responses)
# 결과 추가
df[model_name] = responses
del llm
torch.cuda.empty_cache()
gc.collect()
# 결과 저장
output_path = file_path.replace("uploaded", "processed").replace(".csv", "_result.csv")
os.makedirs("processed", exist_ok=True)
# df.to_csv(output_path, index=False, encoding="utf-8")
save_to_pkl(df, output_path)
logger.info(f"Inference completed. Result saved to: {output_path}")
# 에러 행 저장
if not error_rows.empty:
error_path = file_path.replace("uploaded", "errors").replace(".csv", "_errors.csv")
os.makedirs("errors", exist_ok=True)
@@ -177,12 +167,10 @@ def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
@app.get("/download-latest-result", response_class=FileResponse)
def download_latest_result(background_tasks: BackgroundTasks):
try:
# PKL 파일 저장 디렉토리
processed_dir = "processed"
if not os.path.exists(processed_dir):
return JSONResponse(content={"error": "Processed directory not found."}, status_code=404)
# 디렉토리 내 가장 최근에 저장된 PKL 파일 찾기
pkl_files = [os.path.join(processed_dir, f) for f in os.listdir(processed_dir) if f.endswith(".pkl")]
if not pkl_files:
return JSONResponse(content={"error": "No PKL files found in the processed directory."}, status_code=404)
@@ -190,13 +178,10 @@ def download_latest_result(background_tasks: BackgroundTasks):
latest_pkl = max(pkl_files, key=os.path.getctime)
csv_path = latest_pkl.replace(".pkl", ".csv")
# PKL 파일을 CSV로 변환
convert_pkl_to_csv(latest_pkl, csv_path)
# Background task에 파일 삭제 작업 추가
background_tasks.add_task(delete_csv_file, csv_path)
# CSV 파일 응답 반환
return FileResponse(csv_path, media_type="application/csv", filename=os.path.basename(csv_path))
except Exception as e: