입출력 로직 변경
This commit is contained in:
@@ -22,7 +22,8 @@ MODEL_PATH = "deepseek-ai/DeepSeek-OCR" # change to your model path
|
||||
# Omnidocbench images path: run_dpsk_ocr_eval_batch.py
|
||||
|
||||
|
||||
INPUT_PATH = "/workspace/2018-0802140959-217049.pdf"
|
||||
PDF_INPUT_PATH = "/workspace/2018-0802140959-217049.pdf"
|
||||
IMAGE_INPUT_PATH = "/workspace/20250730180509-798-917-821.jpg"
|
||||
OUTPUT_PATH = "/workspace/output/"
|
||||
|
||||
PROMPT = "<image>\n<|grounding|>Convert the document to markdown."
|
||||
|
||||
24
model_services/deepseek_ocr/main.py
Normal file
24
model_services/deepseek_ocr/main.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import os
|
||||
import argparse
|
||||
import subprocess
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Run OCR based on file type.")
|
||||
parser.add_argument("input_path", type=str, help="Path to the input file (PDF or image).")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.input_path
|
||||
file_extension = os.path.splitext(input_path)[1].lower()
|
||||
|
||||
if file_extension == '.pdf':
|
||||
print(f"Detected PDF file. Running PDF OCR script for: {input_path}")
|
||||
subprocess.run(["python", "run_dpsk_ocr_pdf.py", "--input", input_path])
|
||||
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp', '.gif']:
|
||||
print(f"Detected image file. Running image OCR script for: {input_path}")
|
||||
subprocess.run(["python", "run_dpsk_ocr_image.py", "--input", input_path])
|
||||
else:
|
||||
print(f"Unsupported file type: {file_extension}")
|
||||
print("Please provide a PDF or an image file (.jpg, .jpeg, .png, .bmp, .gif).")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,39 +1,42 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import re
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
if torch.version.cuda == '11.8':
|
||||
|
||||
if torch.version.cuda == "11.8":
|
||||
os.environ["TRITON_PTXAS_PATH"] = "/usr/local/cuda-11.8/bin/ptxas"
|
||||
|
||||
os.environ['VLLM_USE_V1'] = '0'
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
||||
os.environ["VLLM_USE_V1"] = "0"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from config import CROP_MODE, IMAGE_INPUT_PATH, MODEL_PATH, OUTPUT_PATH, PROMPT
|
||||
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
||||
from process.image_process import DeepseekOCRProcessor
|
||||
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
|
||||
from tqdm import tqdm
|
||||
from vllm import AsyncLLMEngine, SamplingParams
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.model_executor.models.registry import ModelRegistry
|
||||
import time
|
||||
|
||||
from deepseek_ocr import DeepseekOCRForCausalLM
|
||||
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
|
||||
from process.image_process import DeepseekOCRProcessor
|
||||
from config import MODEL_PATH, INPUT_PATH, OUTPUT_PATH, PROMPT, CROP_MODE
|
||||
|
||||
|
||||
|
||||
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
|
||||
|
||||
def load_image(image_path):
|
||||
|
||||
def load_image(image_path):
|
||||
try:
|
||||
image = Image.open(image_path)
|
||||
|
||||
|
||||
corrected_image = ImageOps.exif_transpose(image)
|
||||
|
||||
return corrected_image
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"error: {e}")
|
||||
try:
|
||||
@@ -43,14 +46,13 @@ def load_image(image_path):
|
||||
|
||||
|
||||
def re_match(text):
|
||||
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
|
||||
pattern = r"(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)"
|
||||
matches = re.findall(pattern, text, re.DOTALL)
|
||||
|
||||
|
||||
mathes_image = []
|
||||
mathes_other = []
|
||||
for a_match in matches:
|
||||
if '<|ref|>image<|/ref|>' in a_match[0]:
|
||||
if "<|ref|>image<|/ref|>" in a_match[0]:
|
||||
mathes_image.append(a_match[0])
|
||||
else:
|
||||
mathes_other.append(a_match[0])
|
||||
@@ -58,8 +60,6 @@ def re_match(text):
|
||||
|
||||
|
||||
def extract_coordinates_and_label(ref_text, image_width, image_height):
|
||||
|
||||
|
||||
try:
|
||||
label_type = ref_text[1]
|
||||
cor_list = eval(ref_text[2])
|
||||
@@ -71,28 +71,31 @@ def extract_coordinates_and_label(ref_text, image_width, image_height):
|
||||
|
||||
|
||||
def draw_bounding_boxes(image, refs):
|
||||
|
||||
image_width, image_height = image.size
|
||||
img_draw = image.copy()
|
||||
draw = ImageDraw.Draw(img_draw)
|
||||
|
||||
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
|
||||
overlay = Image.new("RGBA", img_draw.size, (0, 0, 0, 0))
|
||||
draw2 = ImageDraw.Draw(overlay)
|
||||
|
||||
|
||||
# except IOError:
|
||||
font = ImageFont.load_default()
|
||||
|
||||
img_idx = 0
|
||||
|
||||
|
||||
for i, ref in enumerate(refs):
|
||||
try:
|
||||
result = extract_coordinates_and_label(ref, image_width, image_height)
|
||||
if result:
|
||||
label_type, points_list = result
|
||||
|
||||
color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
|
||||
|
||||
color_a = color + (20, )
|
||||
color = (
|
||||
np.random.randint(0, 200),
|
||||
np.random.randint(0, 200),
|
||||
np.random.randint(0, 255),
|
||||
)
|
||||
|
||||
color_a = color + (20,)
|
||||
for points in points_list:
|
||||
x1, y1, x2, y2 = points
|
||||
|
||||
@@ -102,7 +105,7 @@ def draw_bounding_boxes(image, refs):
|
||||
x2 = int(x2 / 999 * image_width)
|
||||
y2 = int(y2 / 999 * image_height)
|
||||
|
||||
if label_type == 'image':
|
||||
if label_type == "image":
|
||||
try:
|
||||
cropped = image.crop((x1, y1, x2, y2))
|
||||
cropped.save(f"{OUTPUT_PATH}/images/{img_idx}.jpg")
|
||||
@@ -110,24 +113,36 @@ def draw_bounding_boxes(image, refs):
|
||||
print(e)
|
||||
pass
|
||||
img_idx += 1
|
||||
|
||||
|
||||
try:
|
||||
if label_type == 'title':
|
||||
if label_type == "title":
|
||||
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
|
||||
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
|
||||
draw2.rectangle(
|
||||
[x1, y1, x2, y2],
|
||||
fill=color_a,
|
||||
outline=(0, 0, 0, 0),
|
||||
width=1,
|
||||
)
|
||||
else:
|
||||
draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
|
||||
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
|
||||
draw2.rectangle(
|
||||
[x1, y1, x2, y2],
|
||||
fill=color_a,
|
||||
outline=(0, 0, 0, 0),
|
||||
width=1,
|
||||
)
|
||||
|
||||
text_x = x1
|
||||
text_y = max(0, y1 - 15)
|
||||
|
||||
|
||||
text_bbox = draw.textbbox((0, 0), label_type, font=font)
|
||||
text_width = text_bbox[2] - text_bbox[0]
|
||||
text_height = text_bbox[3] - text_bbox[1]
|
||||
draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
|
||||
fill=(255, 255, 255, 30))
|
||||
|
||||
draw.rectangle(
|
||||
[text_x, text_y, text_x + text_width, text_y + text_height],
|
||||
fill=(255, 255, 255, 30),
|
||||
)
|
||||
|
||||
draw.text((text_x, text_y), label_type, font=font, fill=color)
|
||||
except:
|
||||
pass
|
||||
@@ -142,24 +157,24 @@ def process_image_with_refs(image, ref_texts):
|
||||
return result_image
|
||||
|
||||
|
||||
|
||||
|
||||
async def stream_generate(image=None, prompt=''):
|
||||
|
||||
|
||||
async def stream_generate(image=None, prompt=""):
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=MODEL_PATH,
|
||||
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
|
||||
block_size=256,
|
||||
max_model_len=8192,
|
||||
enforce_eager=False,
|
||||
trust_remote_code=True,
|
||||
trust_remote_code=True,
|
||||
tensor_parallel_size=1,
|
||||
gpu_memory_utilization=0.75,
|
||||
)
|
||||
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
logits_processors = [NoRepeatNGramLogitsProcessor(ngram_size=30, window_size=90, whitelist_token_ids= {128821, 128822})] #whitelist: <td>, </td>
|
||||
|
||||
logits_processors = [
|
||||
NoRepeatNGramLogitsProcessor(
|
||||
ngram_size=30, window_size=90, whitelist_token_ids={128821, 128822}
|
||||
)
|
||||
] # whitelist: <td>, </td>
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.0,
|
||||
@@ -167,137 +182,157 @@ async def stream_generate(image=None, prompt=''):
|
||||
logits_processors=logits_processors,
|
||||
skip_special_tokens=False,
|
||||
# ignore_eos=False,
|
||||
|
||||
)
|
||||
|
||||
|
||||
request_id = f"request-{int(time.time())}"
|
||||
|
||||
printed_length = 0
|
||||
printed_length = 0
|
||||
|
||||
if image and '<image>' in prompt:
|
||||
request = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {"image": image}
|
||||
}
|
||||
if image and "<image>" in prompt:
|
||||
request = {"prompt": prompt, "multi_modal_data": {"image": image}}
|
||||
elif prompt:
|
||||
request = {
|
||||
"prompt": prompt
|
||||
}
|
||||
request = {"prompt": prompt}
|
||||
else:
|
||||
assert False, f'prompt is none!!!'
|
||||
async for request_output in engine.generate(
|
||||
request, sampling_params, request_id
|
||||
):
|
||||
assert False, "prompt is none!!!"
|
||||
async for request_output in engine.generate(request, sampling_params, request_id):
|
||||
if request_output.outputs:
|
||||
full_text = request_output.outputs[0].text
|
||||
new_text = full_text[printed_length:]
|
||||
print(new_text, end='', flush=True)
|
||||
print(new_text, end="", flush=True)
|
||||
printed_length = len(full_text)
|
||||
final_output = full_text
|
||||
print('\n')
|
||||
print("\n")
|
||||
|
||||
return final_output
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", type=str, help="Path to the input image file.")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.input if args.input else IMAGE_INPUT_PATH
|
||||
|
||||
os.makedirs(OUTPUT_PATH, exist_ok=True)
|
||||
os.makedirs(f'{OUTPUT_PATH}/images', exist_ok=True)
|
||||
os.makedirs(f"{OUTPUT_PATH}/images", exist_ok=True)
|
||||
|
||||
image = load_image(INPUT_PATH).convert('RGB')
|
||||
image = load_image(input_path).convert("RGB")
|
||||
|
||||
|
||||
if '<image>' in PROMPT:
|
||||
|
||||
image_features = DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)
|
||||
if "<image>" in PROMPT:
|
||||
image_features = DeepseekOCRProcessor().tokenize_with_images(
|
||||
images=[image], bos=True, eos=True, cropping=CROP_MODE
|
||||
)
|
||||
else:
|
||||
image_features = ''
|
||||
image_features = ""
|
||||
|
||||
prompt = PROMPT
|
||||
|
||||
result_out = asyncio.run(stream_generate(image_features, prompt))
|
||||
|
||||
|
||||
save_results = 1
|
||||
|
||||
if save_results and '<image>' in prompt:
|
||||
print('='*15 + 'save results:' + '='*15)
|
||||
if save_results and "<image>" in prompt:
|
||||
print("=" * 15 + "save results:" + "=" * 15)
|
||||
|
||||
base_name = os.path.basename(input_path)
|
||||
file_name_without_ext = os.path.splitext(base_name)[0]
|
||||
|
||||
output_json_det_path = f'{OUTPUT_PATH}/{file_name_without_ext}_det.json'
|
||||
output_json_path = f'{OUTPUT_PATH}/{file_name_without_ext}.json'
|
||||
|
||||
image_draw = image.copy()
|
||||
|
||||
outputs = result_out
|
||||
|
||||
with open(f'{OUTPUT_PATH}/result_ori.mmd', 'w', encoding = 'utf-8') as afile:
|
||||
afile.write(outputs)
|
||||
with open(output_json_det_path, "w", encoding="utf-8") as afile:
|
||||
json.dump({"parsed": outputs}, afile, ensure_ascii=False, indent=4)
|
||||
|
||||
matches_ref, matches_images, mathes_other = re_match(outputs)
|
||||
# print(matches_ref)
|
||||
result = process_image_with_refs(image_draw, matches_ref)
|
||||
|
||||
|
||||
for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
|
||||
outputs = outputs.replace(a_match_image, f' + '.jpg)\n')
|
||||
outputs = outputs.replace(
|
||||
a_match_image, " + ".jpg)\n"
|
||||
)
|
||||
|
||||
for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
|
||||
outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
|
||||
outputs = (
|
||||
outputs.replace(a_match_other, "")
|
||||
.replace("\\coloneqq", ":=")
|
||||
.replace("\\eqqcolon", "=:")
|
||||
)
|
||||
|
||||
# if 'structural formula' in conversation[0]['content']:
|
||||
# outputs = '<smiles>' + outputs + '</smiles>'
|
||||
with open(f'{OUTPUT_PATH}/result.mmd', 'w', encoding = 'utf-8') as afile:
|
||||
afile.write(outputs)
|
||||
with open(output_json_path, "w", encoding="utf-8") as afile:
|
||||
json.dump({"parsed": outputs}, afile, ensure_ascii=False, indent=4)
|
||||
|
||||
if 'line_type' in outputs:
|
||||
if "line_type" in outputs:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle
|
||||
lines = eval(outputs)['Line']['line']
|
||||
|
||||
line_type = eval(outputs)['Line']['line_type']
|
||||
lines = eval(outputs)["Line"]["line"]
|
||||
|
||||
line_type = eval(outputs)["Line"]["line_type"]
|
||||
# print(lines)
|
||||
|
||||
endpoints = eval(outputs)['Line']['line_endpoint']
|
||||
endpoints = eval(outputs)["Line"]["line_endpoint"]
|
||||
|
||||
fig, ax = plt.subplots(figsize=(3,3), dpi=200)
|
||||
fig, ax = plt.subplots(figsize=(3, 3), dpi=200)
|
||||
ax.set_xlim(-15, 15)
|
||||
ax.set_ylim(-15, 15)
|
||||
|
||||
for idx, line in enumerate(lines):
|
||||
try:
|
||||
p0 = eval(line.split(' -- ')[0])
|
||||
p1 = eval(line.split(' -- ')[-1])
|
||||
p0 = eval(line.split(" -- ")[0])
|
||||
p1 = eval(line.split(" -- ")[-1])
|
||||
|
||||
if line_type[idx] == '--':
|
||||
ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
|
||||
if line_type[idx] == "--":
|
||||
ax.plot(
|
||||
[p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color="k"
|
||||
)
|
||||
else:
|
||||
ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
|
||||
ax.plot(
|
||||
[p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color="k"
|
||||
)
|
||||
|
||||
ax.scatter(p0[0], p0[1], s=5, color = 'k')
|
||||
ax.scatter(p1[0], p1[1], s=5, color = 'k')
|
||||
ax.scatter(p0[0], p0[1], s=5, color="k")
|
||||
ax.scatter(p1[0], p1[1], s=5, color="k")
|
||||
except:
|
||||
pass
|
||||
|
||||
for endpoint in endpoints:
|
||||
label = endpoint.split(": ")[0]
|
||||
(x, y) = eval(endpoint.split(": ")[1])
|
||||
ax.annotate(
|
||||
label,
|
||||
(x, y),
|
||||
xytext=(1, 1),
|
||||
textcoords="offset points",
|
||||
fontsize=5,
|
||||
fontweight="light",
|
||||
)
|
||||
|
||||
label = endpoint.split(': ')[0]
|
||||
(x, y) = eval(endpoint.split(': ')[1])
|
||||
ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points',
|
||||
fontsize=5, fontweight='light')
|
||||
|
||||
try:
|
||||
if 'Circle' in eval(outputs).keys():
|
||||
circle_centers = eval(outputs)['Circle']['circle_center']
|
||||
radius = eval(outputs)['Circle']['radius']
|
||||
if "Circle" in eval(outputs).keys():
|
||||
circle_centers = eval(outputs)["Circle"]["circle_center"]
|
||||
radius = eval(outputs)["Circle"]["radius"]
|
||||
|
||||
for center, r in zip(circle_centers, radius):
|
||||
center = eval(center.split(': ')[1])
|
||||
circle = Circle(center, radius=r, fill=False, edgecolor='black', linewidth=0.8)
|
||||
center = eval(center.split(": ")[1])
|
||||
circle = Circle(
|
||||
center,
|
||||
radius=r,
|
||||
fill=False,
|
||||
edgecolor="black",
|
||||
linewidth=0.8,
|
||||
)
|
||||
ax.add_patch(circle)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
plt.savefig(f'{OUTPUT_PATH}/geo.jpg')
|
||||
plt.savefig(f"{OUTPUT_PATH}/geo.jpg")
|
||||
plt.close()
|
||||
|
||||
result.save(f'{OUTPUT_PATH}/result_with_boxes.jpg')
|
||||
result.save(f"{OUTPUT_PATH}/result_with_boxes.jpg")
|
||||
|
||||
@@ -1,30 +1,39 @@
|
||||
import argparse
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
import fitz
|
||||
import img2pdf
|
||||
import io
|
||||
import re
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
if torch.version.cuda == '11.8':
|
||||
if torch.version.cuda == "11.8":
|
||||
os.environ["TRITON_PTXAS_PATH"] = "/usr/local/cuda-11.8/bin/ptxas"
|
||||
os.environ['VLLM_USE_V1'] = '0'
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
||||
os.environ["VLLM_USE_V1"] = "0"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
|
||||
from config import MODEL_PATH, INPUT_PATH, OUTPUT_PATH, PROMPT, SKIP_REPEAT, MAX_CONCURRENCY, NUM_WORKERS, CROP_MODE
|
||||
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import numpy as np
|
||||
from deepseek_ocr import DeepseekOCRForCausalLM
|
||||
|
||||
from config import (
|
||||
CROP_MODE,
|
||||
MAX_CONCURRENCY,
|
||||
MODEL_PATH,
|
||||
NUM_WORKERS,
|
||||
OUTPUT_PATH,
|
||||
PDF_INPUT_PATH,
|
||||
PROMPT,
|
||||
SKIP_REPEAT,
|
||||
)
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from process.image_process import DeepseekOCRProcessor
|
||||
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.model_executor.models.registry import ModelRegistry
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
|
||||
from process.image_process import DeepseekOCRProcessor
|
||||
from deepseek_ocr import DeepseekOCRForCausalLM
|
||||
|
||||
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
|
||||
|
||||
@@ -34,16 +43,20 @@ llm = LLM(
|
||||
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
|
||||
block_size=256,
|
||||
enforce_eager=False,
|
||||
trust_remote_code=True,
|
||||
trust_remote_code=True,
|
||||
max_model_len=8192,
|
||||
swap_space=0,
|
||||
max_num_seqs=MAX_CONCURRENCY,
|
||||
tensor_parallel_size=1,
|
||||
gpu_memory_utilization=0.9,
|
||||
disable_mm_preprocessor_cache=True
|
||||
disable_mm_preprocessor_cache=True,
|
||||
)
|
||||
|
||||
logits_processors = [NoRepeatNGramLogitsProcessor(ngram_size=20, window_size=50, whitelist_token_ids= {128821, 128822})] #window for fast;whitelist_token_ids: <td>,</td>
|
||||
logits_processors = [
|
||||
NoRepeatNGramLogitsProcessor(
|
||||
ngram_size=20, window_size=50, whitelist_token_ids={128821, 128822}
|
||||
)
|
||||
] # window for fast;whitelist_token_ids: <td>,</td>
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.0,
|
||||
@@ -55,23 +68,24 @@ sampling_params = SamplingParams(
|
||||
|
||||
|
||||
class Colors:
|
||||
RED = '\033[31m'
|
||||
GREEN = '\033[32m'
|
||||
YELLOW = '\033[33m'
|
||||
BLUE = '\033[34m'
|
||||
RESET = '\033[0m'
|
||||
RED = "\033[31m"
|
||||
GREEN = "\033[32m"
|
||||
YELLOW = "\033[33m"
|
||||
BLUE = "\033[34m"
|
||||
RESET = "\033[0m"
|
||||
|
||||
|
||||
def pdf_to_images_high_quality(pdf_path, dpi=144, image_format="PNG"):
|
||||
"""
|
||||
pdf2images
|
||||
"""
|
||||
images = []
|
||||
|
||||
|
||||
pdf_document = fitz.open(pdf_path)
|
||||
|
||||
|
||||
zoom = dpi / 72.0
|
||||
matrix = fitz.Matrix(zoom, zoom)
|
||||
|
||||
|
||||
for page_num in range(pdf_document.page_count):
|
||||
page = pdf_document[page_num]
|
||||
|
||||
@@ -84,32 +98,34 @@ def pdf_to_images_high_quality(pdf_path, dpi=144, image_format="PNG"):
|
||||
else:
|
||||
img_data = pixmap.tobytes("png")
|
||||
img = Image.open(io.BytesIO(img_data))
|
||||
if img.mode in ('RGBA', 'LA'):
|
||||
background = Image.new('RGB', img.size, (255, 255, 255))
|
||||
background.paste(img, mask=img.split()[-1] if img.mode == 'RGBA' else None)
|
||||
if img.mode in ("RGBA", "LA"):
|
||||
background = Image.new("RGB", img.size, (255, 255, 255))
|
||||
background.paste(
|
||||
img, mask=img.split()[-1] if img.mode == "RGBA" else None
|
||||
)
|
||||
img = background
|
||||
|
||||
|
||||
images.append(img)
|
||||
|
||||
|
||||
pdf_document.close()
|
||||
return images
|
||||
|
||||
def pil_to_pdf_img2pdf(pil_images, output_path):
|
||||
|
||||
def pil_to_pdf_img2pdf(pil_images, output_path):
|
||||
if not pil_images:
|
||||
return
|
||||
|
||||
|
||||
image_bytes_list = []
|
||||
|
||||
|
||||
for img in pil_images:
|
||||
if img.mode != 'RGB':
|
||||
img = img.convert('RGB')
|
||||
|
||||
if img.mode != "RGB":
|
||||
img = img.convert("RGB")
|
||||
|
||||
img_buffer = io.BytesIO()
|
||||
img.save(img_buffer, format='JPEG', quality=95)
|
||||
img.save(img_buffer, format="JPEG", quality=95)
|
||||
img_bytes = img_buffer.getvalue()
|
||||
image_bytes_list.append(img_bytes)
|
||||
|
||||
|
||||
try:
|
||||
pdf_bytes = img2pdf.convert(image_bytes_list)
|
||||
with open(output_path, "wb") as f:
|
||||
@@ -119,16 +135,14 @@ def pil_to_pdf_img2pdf(pil_images, output_path):
|
||||
print(f"error: {e}")
|
||||
|
||||
|
||||
|
||||
def re_match(text):
|
||||
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
|
||||
pattern = r"(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)"
|
||||
matches = re.findall(pattern, text, re.DOTALL)
|
||||
|
||||
|
||||
mathes_image = []
|
||||
mathes_other = []
|
||||
for a_match in matches:
|
||||
if '<|ref|>image<|/ref|>' in a_match[0]:
|
||||
if "<|ref|>image<|/ref|>" in a_match[0]:
|
||||
mathes_image.append(a_match[0])
|
||||
else:
|
||||
mathes_other.append(a_match[0])
|
||||
@@ -136,8 +150,6 @@ def re_match(text):
|
||||
|
||||
|
||||
def extract_coordinates_and_label(ref_text, image_width, image_height):
|
||||
|
||||
|
||||
try:
|
||||
label_type = ref_text[1]
|
||||
cor_list = eval(ref_text[2])
|
||||
@@ -149,28 +161,31 @@ def extract_coordinates_and_label(ref_text, image_width, image_height):
|
||||
|
||||
|
||||
def draw_bounding_boxes(image, refs, jdx):
|
||||
|
||||
image_width, image_height = image.size
|
||||
img_draw = image.copy()
|
||||
draw = ImageDraw.Draw(img_draw)
|
||||
|
||||
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
|
||||
overlay = Image.new("RGBA", img_draw.size, (0, 0, 0, 0))
|
||||
draw2 = ImageDraw.Draw(overlay)
|
||||
|
||||
|
||||
# except IOError:
|
||||
font = ImageFont.load_default()
|
||||
|
||||
img_idx = 0
|
||||
|
||||
|
||||
for i, ref in enumerate(refs):
|
||||
try:
|
||||
result = extract_coordinates_and_label(ref, image_width, image_height)
|
||||
if result:
|
||||
label_type, points_list = result
|
||||
|
||||
color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
|
||||
|
||||
color_a = color + (20, )
|
||||
color = (
|
||||
np.random.randint(0, 200),
|
||||
np.random.randint(0, 200),
|
||||
np.random.randint(0, 255),
|
||||
)
|
||||
|
||||
color_a = color + (20,)
|
||||
for points in points_list:
|
||||
x1, y1, x2, y2 = points
|
||||
|
||||
@@ -180,7 +195,7 @@ def draw_bounding_boxes(image, refs, jdx):
|
||||
x2 = int(x2 / 999 * image_width)
|
||||
y2 = int(y2 / 999 * image_height)
|
||||
|
||||
if label_type == 'image':
|
||||
if label_type == "image":
|
||||
try:
|
||||
cropped = image.crop((x1, y1, x2, y2))
|
||||
cropped.save(f"{OUTPUT_PATH}/images/{jdx}_{img_idx}.jpg")
|
||||
@@ -188,24 +203,36 @@ def draw_bounding_boxes(image, refs, jdx):
|
||||
print(e)
|
||||
pass
|
||||
img_idx += 1
|
||||
|
||||
|
||||
try:
|
||||
if label_type == 'title':
|
||||
if label_type == "title":
|
||||
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
|
||||
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
|
||||
draw2.rectangle(
|
||||
[x1, y1, x2, y2],
|
||||
fill=color_a,
|
||||
outline=(0, 0, 0, 0),
|
||||
width=1,
|
||||
)
|
||||
else:
|
||||
draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
|
||||
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
|
||||
draw2.rectangle(
|
||||
[x1, y1, x2, y2],
|
||||
fill=color_a,
|
||||
outline=(0, 0, 0, 0),
|
||||
width=1,
|
||||
)
|
||||
|
||||
text_x = x1
|
||||
text_y = max(0, y1 - 15)
|
||||
|
||||
|
||||
text_bbox = draw.textbbox((0, 0), label_type, font=font)
|
||||
text_width = text_bbox[2] - text_bbox[0]
|
||||
text_height = text_bbox[3] - text_bbox[1]
|
||||
draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
|
||||
fill=(255, 255, 255, 30))
|
||||
|
||||
draw.rectangle(
|
||||
[text_x, text_y, text_x + text_width, text_y + text_height],
|
||||
fill=(255, 255, 255, 30),
|
||||
)
|
||||
|
||||
draw.text((text_x, text_y), label_type, font=font, fill=color)
|
||||
except:
|
||||
pass
|
||||
@@ -225,33 +252,41 @@ def process_single_image(image):
|
||||
prompt_in = prompt
|
||||
cache_item = {
|
||||
"prompt": prompt_in,
|
||||
"multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)},
|
||||
"multi_modal_data": {
|
||||
"image": DeepseekOCRProcessor().tokenize_with_images(
|
||||
images=[image], bos=True, eos=True, cropping=CROP_MODE
|
||||
)
|
||||
},
|
||||
}
|
||||
return cache_item
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", type=str, help="Path to the input PDF file.")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.input if args.input else PDF_INPUT_PATH
|
||||
|
||||
os.makedirs(OUTPUT_PATH, exist_ok=True)
|
||||
os.makedirs(f'{OUTPUT_PATH}/images', exist_ok=True)
|
||||
|
||||
print(f'{Colors.RED}PDF loading .....{Colors.RESET}')
|
||||
os.makedirs(f"{OUTPUT_PATH}/images", exist_ok=True)
|
||||
|
||||
print(f"{Colors.RED}PDF loading .....{Colors.RESET}")
|
||||
|
||||
images = pdf_to_images_high_quality(INPUT_PATH)
|
||||
|
||||
images = pdf_to_images_high_quality(input_path)
|
||||
|
||||
prompt = PROMPT
|
||||
|
||||
# batch_inputs = []
|
||||
|
||||
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
||||
batch_inputs = list(tqdm(
|
||||
executor.map(process_single_image, images),
|
||||
total=len(images),
|
||||
desc="Pre-processed images"
|
||||
))
|
||||
|
||||
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
||||
batch_inputs = list(
|
||||
tqdm(
|
||||
executor.map(process_single_image, images),
|
||||
total=len(images),
|
||||
desc="Pre-processed images",
|
||||
)
|
||||
)
|
||||
|
||||
# for image in tqdm(images):
|
||||
|
||||
@@ -264,38 +299,39 @@ if __name__ == "__main__":
|
||||
# ]
|
||||
# batch_inputs.extend(cache_list)
|
||||
|
||||
|
||||
outputs_list = llm.generate(
|
||||
batch_inputs,
|
||||
sampling_params=sampling_params
|
||||
)
|
||||
|
||||
outputs_list = llm.generate(batch_inputs, sampling_params=sampling_params)
|
||||
|
||||
output_path = OUTPUT_PATH
|
||||
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
|
||||
mmd_det_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('.pdf', '_det.mmd')
|
||||
mmd_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('pdf', 'mmd')
|
||||
pdf_out_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('.pdf', '_layouts.pdf')
|
||||
contents_det = ''
|
||||
contents = ''
|
||||
json_det_path = (
|
||||
output_path + "/" + input_path.split("/")[-1].replace(".pdf", "_det.json")
|
||||
)
|
||||
json_path = (
|
||||
output_path + "/" + input_path.split("/")[-1].replace(".pdf", ".json")
|
||||
)
|
||||
pdf_out_path = (
|
||||
output_path
|
||||
+ "/"
|
||||
+ input_path.split("/")[-1].replace(".pdf", "_layouts.pdf")
|
||||
)
|
||||
contents_det = ""
|
||||
contents = ""
|
||||
draw_images = []
|
||||
jdx = 0
|
||||
for output, img in zip(outputs_list, images):
|
||||
content = output.outputs[0].text
|
||||
|
||||
if '<|end▁of▁sentence|>' in content: # repeat no eos
|
||||
content = content.replace('<|end▁of▁sentence|>', '')
|
||||
if "<|end▁of▁sentence|>" in content: # repeat no eos
|
||||
content = content.replace("<|end▁of▁sentence|>", "")
|
||||
else:
|
||||
if SKIP_REPEAT:
|
||||
continue
|
||||
|
||||
|
||||
page_num = f'\n<--- Page Split --->'
|
||||
page_num = "\n<--- Page Split --->"
|
||||
|
||||
contents_det += content + f'\n{page_num}\n'
|
||||
contents_det += content + f"\n{page_num}\n"
|
||||
|
||||
image_draw = img.copy()
|
||||
|
||||
@@ -303,28 +339,30 @@ if __name__ == "__main__":
|
||||
# print(matches_ref)
|
||||
result_image = process_image_with_refs(image_draw, matches_ref, jdx)
|
||||
|
||||
|
||||
draw_images.append(result_image)
|
||||
|
||||
|
||||
for idx, a_match_image in enumerate(matches_images):
|
||||
content = content.replace(a_match_image, f' + '_' + str(idx) + '.jpg)\n')
|
||||
content = content.replace(
|
||||
a_match_image, " + "_" + str(idx) + ".jpg)\n"
|
||||
)
|
||||
|
||||
for idx, a_match_other in enumerate(mathes_other):
|
||||
content = content.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:').replace('\n\n\n\n', '\n\n').replace('\n\n\n', '\n\n')
|
||||
|
||||
|
||||
contents += content + f'\n{page_num}\n'
|
||||
content = (
|
||||
content.replace(a_match_other, "")
|
||||
.replace("\\coloneqq", ":=")
|
||||
.replace("\\eqqcolon", "=:")
|
||||
.replace("\n\n\n\n", "\n\n")
|
||||
.replace("\n\n\n", "\n\n")
|
||||
)
|
||||
|
||||
contents += content + f"\n{page_num}\n"
|
||||
|
||||
jdx += 1
|
||||
|
||||
with open(mmd_det_path, 'w', encoding='utf-8') as afile:
|
||||
afile.write(contents_det)
|
||||
|
||||
with open(mmd_path, 'w', encoding='utf-8') as afile:
|
||||
afile.write(contents)
|
||||
with open(json_det_path, "w", encoding="utf-8") as afile:
|
||||
json.dump({"parsed": contents_det}, afile, ensure_ascii=False, indent=4)
|
||||
|
||||
with open(json_path, "w", encoding="utf-8") as afile:
|
||||
json.dump({"parsed": contents}, afile, ensure_ascii=False, indent=4)
|
||||
|
||||
pil_to_pdf_img2pdf(draw_images, pdf_out_path)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user