# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py import math from typing import TYPE_CHECKING, List, Optional from transformers import DataCollatorForLanguageModeling from ...data import get_dataset, split_dataset from ...extras.ploting import plot_loss from ...model import load_model, load_tokenizer from ..utils import create_modelcard_and_push from .trainer import CustomTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from ...hparams import DataArguments, FinetuningArguments, ModelArguments def run_pt( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None, ): tokenizer = load_tokenizer(model_args) dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt") model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # Initialize our Trainer trainer = CustomTrainer( model=model, args=training_args, finetuning_args=finetuning_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, **split_dataset(dataset, data_args, training_args), ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)