From 5f79b261238d036bb1ed24e74443eeb1b2897450 Mon Sep 17 00:00:00 2001 From: kyy Date: Wed, 19 Feb 2025 15:05:26 +0900 Subject: [PATCH] Initial commit --- README.md | 33 +++------------------------------ 1 file changed, 3 insertions(+), 30 deletions(-) diff --git a/README.md b/README.md index b1790553..d28d5057 100644 --- a/README.md +++ b/README.md @@ -1,25 +1,9 @@ ## Table of Contents -- [Features](#features) - [Supported Models](#supported-models) - [Supported Training Approaches](#supported-training-approaches) -- [Provided Datasets](#provided-datasets) - [Requirement](#requirement) - [Getting Started](#getting-started) -- [Projects using LLaMA Factory](#projects-using-llama-factory) -- [License](#license) -- [Citation](#citation) -- [Acknowledgement](#acknowledgement) - -## Features - -- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, Yi, Gemma, Baichuan, ChatGLM, Phi, etc. -- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc. -- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ. -- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning. -- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA. -- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc. -- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker. ## Supported Models @@ -59,15 +43,6 @@ | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl | | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan | -> [!NOTE] -> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models. -> -> Remember to use the **SAME** template in training and inference. - -Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported. - -You also can add a custom chat template to [template.py](src/llamafactory/data/template.py). - ## Supported Training Approaches | Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA | @@ -81,10 +56,8 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t | ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | -> [!TIP] -> The implementation details of PPO can be found in [this blog](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html). - -Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands. +> [!Tip] +> 일부 모델델은 사용 전에 승인이 필요하므로, Hugging Face 계정으로 로그인하는 것을 추천드립니다. ```bash pip install --upgrade huggingface_hub @@ -152,7 +125,7 @@ Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel ### Data Preparation -You can either use datasets on HuggingFace / ModelScope / Modelers hub or load the dataset in local disk. +HuggingFace, ModelScope, Modelers 허브에서 제공하는 데이터셋을 사용하거나, 로컬 디스크에서 데이터셋을 로드할 수 있습니다. > [!NOTE] > Please update `data/dataset_info.json` to use your custom dataset.