165 lines
6.6 KiB
Python
Executable File
165 lines
6.6 KiB
Python
Executable File
import os
|
|
import pandas as pd
|
|
from fastapi import FastAPI, UploadFile, BackgroundTasks
|
|
from fastapi.responses import JSONResponse, FileResponse
|
|
from redis import Redis
|
|
from rq import Queue
|
|
from vllm import LLM, SamplingParams
|
|
import logging
|
|
import gc
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
import sys
|
|
sys.path.append("/workspace/LLM_asyncio")
|
|
from template import LLMInference
|
|
|
|
app = FastAPI()
|
|
|
|
# Redis 설정
|
|
redis_conn = Redis(host="redis-server", port=6379, decode_responses=True)
|
|
queue = Queue("model_tasks", connection=redis_conn)
|
|
|
|
# 로깅 설정
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# FastAPI 엔드포인트: CSV 파일 및 모델 리스트 업로드 처리
|
|
@app.post("/start-inference/")
|
|
async def process_csv(input_csv: UploadFile, model_list_txt: UploadFile, background_tasks: BackgroundTasks):
|
|
# 파일 형식 확인
|
|
if not input_csv.filename.endswith(".csv"):
|
|
return JSONResponse(content={"error": "Uploaded file is not a CSV."}, status_code=400)
|
|
if not model_list_txt.filename.endswith(".txt"):
|
|
return JSONResponse(content={"error": "Uploaded model list is not a TXT file."}, status_code=400)
|
|
|
|
# 파일 저장
|
|
file_path = f"uploaded/{input_csv.filename}"
|
|
model_list_path = f"uploaded/{model_list_txt.filename}"
|
|
os.makedirs("uploaded", exist_ok=True)
|
|
|
|
with open(file_path, "wb") as f:
|
|
f.write(await input_csv.read())
|
|
|
|
with open(model_list_path, "wb") as f:
|
|
f.write(await model_list_txt.read())
|
|
|
|
logger.info(f"Files uploaded: {file_path}, {model_list_path}")
|
|
|
|
# 작업 큐에 추가
|
|
job = queue.enqueue(run_inference, file_path, model_list_path, job_timeout=1800)
|
|
logger.info(f"Job enqueued: {job.id}")
|
|
return {"job_id": job.id, "status": "queued"}
|
|
|
|
def chat_formating(input_sentence: str, model_name: str):
|
|
try:
|
|
if "llama" in model_name:
|
|
hidden_prompt = LLMInference.llama_template()
|
|
if "gemma" in model_name:
|
|
hidden_prompt = LLMInference.gemma_template()
|
|
if "exaone" in model_name:
|
|
hidden_prompt = LLMInference.exaone_template()
|
|
|
|
formated_sentence = hidden_prompt.format(input_sent=input_sentence)
|
|
return formated_sentence
|
|
except Exception as e:
|
|
logger.error(f"Not formatting input sentence: {e}")
|
|
return input_sentence
|
|
|
|
# 모델 추론 함수
|
|
def run_inference(file_path: str, model_list_path: str, batch_size: int = 32):
|
|
try:
|
|
logger.info(f"Starting inference for file: {file_path} using models from {model_list_path}")
|
|
|
|
# 모델 리스트 읽기
|
|
with open(model_list_path, "r") as f:
|
|
model_list = [line.strip() for line in f.readlines()]
|
|
|
|
if not model_list:
|
|
raise ValueError("The model list file is empty.")
|
|
|
|
# CSV 읽기
|
|
df = pd.read_csv(file_path, encoding="euc-kr")
|
|
if "input" not in df.columns:
|
|
raise ValueError("The input CSV must contain a column named 'input'.")
|
|
|
|
# 에러 발생한 행 저장용 DataFrame 초기화
|
|
error_rows = pd.DataFrame(columns=df.columns)
|
|
|
|
# 각 모델로 추론
|
|
for model in model_list:
|
|
model_name = model.split("/")[-1]
|
|
try:
|
|
logger.info(f"Loading model: {model}")
|
|
llm = LLM(model)
|
|
torch.cuda.empty_cache()
|
|
logger.info(f"Model {model} loaded successfully.")
|
|
except Exception as e:
|
|
logger.error(f"Error loading model {model}: {e}")
|
|
continue
|
|
|
|
sampling_params = SamplingParams(max_tokens=50, temperature=0.7, top_p=0.9, top_k=50)
|
|
|
|
# 추론 수행
|
|
responses = []
|
|
for i in tqdm(range(0, len(df), batch_size), desc=f"Processing {model}"):
|
|
batch = df.iloc[i:i+batch_size]
|
|
batch_responses = []
|
|
for _, row in batch.iterrows():
|
|
try:
|
|
original_input = row["input"]
|
|
formating_input = chat_formating(input_sentence=row["input"], model_name=model_name.lower())
|
|
response = llm.generate(formating_input, sampling_params)[0].outputs[0].text.strip()
|
|
logger.info(f"Model: {model}, Input: {original_input}, Output: {response}")
|
|
batch_responses.append(response)
|
|
except Exception as e:
|
|
logger.error(f"Error during inference for model {model}, row {row.name}: {e}")
|
|
error_rows = pd.concat([error_rows, pd.DataFrame([row])], ignore_index=True)
|
|
batch_responses.append(None)
|
|
responses.extend(batch_responses)
|
|
|
|
# 결과 추가
|
|
df[model_name] = responses
|
|
|
|
del llm
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
# 결과 저장
|
|
output_path = file_path.replace("uploaded", "processed").replace(".csv", "_result.csv")
|
|
os.makedirs("processed", exist_ok=True)
|
|
df.to_csv(output_path, index=False, encoding="utf-8")
|
|
logger.info(f"Inference completed. Result saved to: {output_path}")
|
|
|
|
# 에러 행 저장
|
|
if not error_rows.empty:
|
|
error_path = file_path.replace("uploaded", "errors").replace(".csv", "_errors.csv")
|
|
os.makedirs("errors", exist_ok=True)
|
|
error_rows.to_csv(error_path, index=False, encoding="utf-8")
|
|
logger.info(f"Error rows saved to: {error_path}")
|
|
|
|
return output_path
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error during inference: {e}")
|
|
raise
|
|
|
|
# 결과 파일 다운로드
|
|
@app.get("/download-latest", response_class=FileResponse)
|
|
def download_latest_file():
|
|
try:
|
|
# processed 디렉토리 경로
|
|
directory = "processed"
|
|
csv_files = [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith(".csv")]
|
|
|
|
if not csv_files:
|
|
return JSONResponse(content={"error": "No CSV files found in the processed directory."}, status_code=404)
|
|
|
|
latest_file = max(csv_files, key=os.path.getctime)
|
|
|
|
logger.info(f"Downloading latest file: {latest_file}")
|
|
return FileResponse(latest_file, media_type="application/csv", filename=os.path.basename(latest_file))
|
|
except Exception as e:
|
|
logger.error(f"Error during file download: {e}")
|
|
return JSONResponse(content={"error": "Failed to download the latest file."}, status_code=500)
|