161 lines
5.1 KiB
Python
161 lines
5.1 KiB
Python
import logging
|
|
from typing import List, Tuple
|
|
|
|
import pandas as pd
|
|
|
|
from autorag.nodes.passagereranker.base import BasePassageReranker
|
|
from autorag.utils import result_to_dataframe
|
|
from autorag.utils.util import select_top_k, sort_by_scores, empty_cuda_cache
|
|
|
|
logger = logging.getLogger("AutoRAG")
|
|
|
|
|
|
class Upr(BasePassageReranker):
|
|
def __init__(
|
|
self,
|
|
project_dir: str,
|
|
use_bf16: bool = False,
|
|
prefix_prompt: str = "Passage: ",
|
|
suffix_prompt: str = "Please write a question based on this passage.",
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Initialize the UPR reranker node.
|
|
|
|
:param project_dir: The project directory
|
|
:param use_bf16: Whether to use bfloat16 for the model. Default is False.
|
|
:param prefix_prompt: The prefix prompt for the language model that generates question for reranking.
|
|
Default is "Passage: ".
|
|
The prefix prompt serves as the initial context or instruction for the language model.
|
|
It sets the stage for what is expected in the output
|
|
:param suffix_prompt: The suffix prompt for the language model that generates question for reranking.
|
|
Default is "Please write a question based on this passage.".
|
|
The suffix prompt provides a cue or a closing instruction to the language model,
|
|
signaling how to conclude the generated text or what format to follow at the end.
|
|
:param kwargs: Extra arguments
|
|
"""
|
|
super().__init__(project_dir, *args, **kwargs)
|
|
|
|
self.scorer = UPRScorer(
|
|
suffix_prompt=suffix_prompt, prefix_prompt=prefix_prompt, use_bf16=use_bf16
|
|
)
|
|
|
|
def __del__(self):
|
|
del self.scorer
|
|
super().__del__()
|
|
|
|
@result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"])
|
|
def pure(self, previous_result: pd.DataFrame, *args, **kwargs):
|
|
queries, contents, _, ids = self.cast_to_run(previous_result)
|
|
top_k = kwargs.pop("top_k")
|
|
return self._pure(queries, contents, ids, top_k)
|
|
|
|
def _pure(
|
|
self,
|
|
queries: List[str],
|
|
contents_list: List[List[str]],
|
|
ids_list: List[List[str]],
|
|
top_k: int,
|
|
) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]:
|
|
"""
|
|
Rerank a list of contents based on their relevance to a query using UPR.
|
|
UPR is a reranker based on UPR (https://github.com/DevSinghSachan/unsupervised-passage-reranking).
|
|
The language model will make a question based on the passage and rerank the passages by the likelihood of the question.
|
|
The default model is t5-large.
|
|
|
|
:param queries: The list of queries to use for reranking
|
|
:param contents_list: The list of lists of contents to rerank
|
|
:param ids_list: The list of lists of ids retrieved from the initial ranking
|
|
:param top_k: The number of passages to be retrieved
|
|
|
|
:return: tuple of lists containing the reranked contents, ids, and scores
|
|
"""
|
|
df = pd.DataFrame(
|
|
{
|
|
"query": queries,
|
|
"contents": contents_list,
|
|
"ids": ids_list,
|
|
}
|
|
)
|
|
|
|
df["scores"] = df.apply(
|
|
lambda row: self.scorer.compute(
|
|
query=row["query"], contents=row["contents"]
|
|
),
|
|
axis=1,
|
|
)
|
|
df[["contents", "ids", "scores"]] = df.apply(
|
|
lambda x: sort_by_scores(x, reverse=False), axis=1, result_type="expand"
|
|
)
|
|
results = select_top_k(df, ["contents", "ids", "scores"], top_k)
|
|
return (
|
|
results["contents"].tolist(),
|
|
results["ids"].tolist(),
|
|
results["scores"].tolist(),
|
|
)
|
|
|
|
|
|
class UPRScorer:
|
|
def __init__(self, suffix_prompt: str, prefix_prompt: str, use_bf16: bool = False):
|
|
try:
|
|
import torch
|
|
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
except ImportError:
|
|
raise ImportError(
|
|
"torch is not installed. Please install torch to use UPRReranker."
|
|
)
|
|
model_name = "t5-large"
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
self.model = T5ForConditionalGeneration.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16 if use_bf16 else torch.float32
|
|
).to(self.device)
|
|
self.suffix_prompt = suffix_prompt
|
|
self.prefix_prompt = prefix_prompt
|
|
|
|
def compute(self, query: str, contents: List[str]) -> List[float]:
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
raise ImportError(
|
|
"torch is not installed. Please install torch to use UPRReranker."
|
|
)
|
|
query_token = self.tokenizer(
|
|
query, max_length=128, truncation=True, return_tensors="pt"
|
|
)
|
|
prompts = list(
|
|
map(
|
|
lambda content: f"{self.prefix_prompt} {content} {self.suffix_prompt}",
|
|
contents,
|
|
)
|
|
)
|
|
prompt_token_outputs = self.tokenizer(
|
|
prompts,
|
|
padding="longest",
|
|
max_length=512,
|
|
pad_to_multiple_of=8,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
query_input_ids = torch.repeat_interleave(
|
|
query_token["input_ids"], len(contents), dim=0
|
|
).to(self.device)
|
|
|
|
with torch.no_grad():
|
|
logits = self.model(
|
|
input_ids=prompt_token_outputs["input_ids"].to(self.device),
|
|
attention_mask=prompt_token_outputs["attention_mask"].to(self.device),
|
|
labels=query_input_ids,
|
|
).logits
|
|
log_softmax = torch.nn.functional.log_softmax(logits, dim=-1)
|
|
nll = -log_softmax.gather(2, query_input_ids.unsqueeze(2)).squeeze(2)
|
|
avg_nll = torch.sum(nll, dim=1)
|
|
return avg_nll.tolist()
|
|
|
|
def __del__(self):
|
|
del self.model
|
|
del self.tokenizer
|
|
empty_cuda_cache()
|