192 lines
4.8 KiB
Python
192 lines
4.8 KiB
Python
from pathlib import Path
|
|
from typing import Any, List, Tuple
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from autorag.nodes.passagereranker.base import BasePassageReranker
|
|
|
|
|
|
from autorag.utils.util import (
|
|
make_batch,
|
|
sort_by_scores,
|
|
flatten_apply,
|
|
select_top_k,
|
|
result_to_dataframe,
|
|
pop_params,
|
|
empty_cuda_cache,
|
|
)
|
|
|
|
|
|
class OpenVINOReranker(BasePassageReranker):
|
|
def __init__(
|
|
self,
|
|
project_dir: str,
|
|
model: str = "BAAI/bge-reranker-large",
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(project_dir)
|
|
|
|
try:
|
|
from huggingface_hub import HfApi
|
|
from transformers import AutoTokenizer
|
|
except ImportError as e:
|
|
raise ValueError(
|
|
"Could not import huggingface_hub python package. "
|
|
"Please install it with: "
|
|
"`pip install -U huggingface_hub`."
|
|
) from e
|
|
|
|
def require_model_export(
|
|
model_id: str, revision: Any = None, subfolder: Any = None
|
|
) -> bool:
|
|
model_dir = Path(model_id)
|
|
if subfolder is not None:
|
|
model_dir = model_dir / subfolder
|
|
if model_dir.is_dir():
|
|
return (
|
|
not (model_dir / "openvino_model.xml").exists()
|
|
or not (model_dir / "openvino_model.bin").exists()
|
|
)
|
|
hf_api = HfApi()
|
|
try:
|
|
model_info = hf_api.model_info(model_id, revision=revision or "main")
|
|
normalized_subfolder = (
|
|
None if subfolder is None else Path(subfolder).as_posix()
|
|
)
|
|
model_files = [
|
|
file.rfilename
|
|
for file in model_info.siblings
|
|
if normalized_subfolder is None
|
|
or file.rfilename.startswith(normalized_subfolder)
|
|
]
|
|
ov_model_path = (
|
|
"openvino_model.xml"
|
|
if subfolder is None
|
|
else f"{normalized_subfolder}/openvino_model.xml"
|
|
)
|
|
return (
|
|
ov_model_path not in model_files
|
|
or ov_model_path.replace(".xml", ".bin") not in model_files
|
|
)
|
|
except Exception:
|
|
return True
|
|
|
|
try:
|
|
from optimum.intel.openvino import OVModelForSequenceClassification
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install optimum package to use OpenVINOReranker"
|
|
"pip install 'optimum[openvino,nncf]'"
|
|
)
|
|
|
|
model_kwargs = pop_params(
|
|
OVModelForSequenceClassification.from_pretrained, kwargs
|
|
)
|
|
|
|
if require_model_export(model):
|
|
# use remote model
|
|
self.model = OVModelForSequenceClassification.from_pretrained(
|
|
model, export=True, **model_kwargs
|
|
)
|
|
else:
|
|
# use local model
|
|
self.model = OVModelForSequenceClassification.from_pretrained(
|
|
model, **model_kwargs
|
|
)
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model)
|
|
|
|
def __del__(self):
|
|
del self.model
|
|
del self.tokenizer
|
|
empty_cuda_cache()
|
|
super().__del__()
|
|
|
|
@result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"])
|
|
def pure(self, previous_result: pd.DataFrame, *args, **kwargs):
|
|
queries, contents, _, ids = self.cast_to_run(previous_result)
|
|
top_k = kwargs.get("top_k", 3)
|
|
batch = kwargs.get("batch", 64)
|
|
return self._pure(queries, contents, ids, top_k, batch)
|
|
|
|
def _pure(
|
|
self,
|
|
queries: List[str],
|
|
contents_list: List[List[str]],
|
|
ids_list: List[List[str]],
|
|
top_k: int,
|
|
batch: int = 64,
|
|
) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]:
|
|
"""
|
|
Rerank a list of contents based on their relevance to a query using MonoT5.
|
|
|
|
:param queries: The list of queries to use for reranking
|
|
:param contents_list: The list of lists of contents to rerank
|
|
:param ids_list: The list of lists of ids retrieved from the initial ranking
|
|
:param top_k: The number of passages to be retrieved
|
|
|
|
:param batch: The number of queries to be processed in a batch
|
|
:return: tuple of lists containing the reranked contents, ids, and scores
|
|
"""
|
|
# Retrieve the tokens used by the model to represent false and true predictions
|
|
|
|
nested_list = [
|
|
list(map(lambda x: [query, x], content_list))
|
|
for query, content_list in zip(queries, contents_list)
|
|
]
|
|
|
|
rerank_scores = flatten_apply(
|
|
openvino_run_model,
|
|
nested_list,
|
|
model=self.model,
|
|
batch_size=batch,
|
|
tokenizer=self.tokenizer,
|
|
)
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"contents": contents_list,
|
|
"ids": ids_list,
|
|
"scores": rerank_scores,
|
|
}
|
|
)
|
|
df[["contents", "ids", "scores"]] = df.apply(
|
|
sort_by_scores, axis=1, result_type="expand"
|
|
)
|
|
results = select_top_k(df, ["contents", "ids", "scores"], top_k)
|
|
|
|
return (
|
|
results["contents"].tolist(),
|
|
results["ids"].tolist(),
|
|
results["scores"].tolist(),
|
|
)
|
|
|
|
|
|
def openvino_run_model(
|
|
input_texts,
|
|
model,
|
|
batch_size: int,
|
|
tokenizer,
|
|
):
|
|
batch_input_texts = make_batch(input_texts, batch_size)
|
|
results = []
|
|
for batch_texts in batch_input_texts:
|
|
input_tensors = tokenizer(
|
|
batch_texts,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
outputs = model(**input_tensors, return_dict=True)
|
|
if outputs[0].shape[1] > 1:
|
|
scores = outputs[0][:, 1]
|
|
else:
|
|
scores = outputs[0].flatten()
|
|
|
|
scores = list(map(float, (1 / (1 + np.exp(-np.array(scores))))))
|
|
results.extend(scores)
|
|
return results
|