113 lines
3.3 KiB
Python
113 lines
3.3 KiB
Python
from typing import List, Tuple, Iterable
|
|
|
|
import pandas as pd
|
|
|
|
from autorag.nodes.passagereranker.base import BasePassageReranker
|
|
from autorag.utils.util import (
|
|
make_batch,
|
|
sort_by_scores,
|
|
flatten_apply,
|
|
select_top_k,
|
|
pop_params,
|
|
result_to_dataframe,
|
|
empty_cuda_cache,
|
|
)
|
|
|
|
|
|
class FlagEmbeddingReranker(BasePassageReranker):
|
|
def __init__(
|
|
self, project_dir, model_name: str = "BAAI/bge-reranker-large", *args, **kwargs
|
|
):
|
|
"""
|
|
Initialize the FlagEmbeddingReranker module.
|
|
|
|
:param project_dir: The project directory.
|
|
:param model_name: The name of the BAAI Reranker normal-model name.
|
|
Default is "BAAI/bge-reranker-large"
|
|
:param kwargs: Extra parameter for FlagEmbedding.FlagReranker
|
|
"""
|
|
super().__init__(project_dir)
|
|
try:
|
|
from FlagEmbedding import FlagReranker
|
|
except ImportError:
|
|
raise ImportError(
|
|
"FlagEmbeddingReranker requires the 'FlagEmbedding' package to be installed."
|
|
)
|
|
model_params = pop_params(FlagReranker.__init__, kwargs)
|
|
model_params.pop("model_name_or_path", None)
|
|
self.model = FlagReranker(model_name_or_path=model_name, **model_params)
|
|
|
|
def __del__(self):
|
|
del self.model
|
|
empty_cuda_cache()
|
|
super().__del__()
|
|
|
|
@result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"])
|
|
def pure(self, previous_result: pd.DataFrame, *args, **kwargs):
|
|
queries, contents, _, ids = self.cast_to_run(previous_result)
|
|
top_k = kwargs.pop("top_k")
|
|
batch = kwargs.pop("batch", 64)
|
|
return self._pure(queries, contents, ids, top_k, batch)
|
|
|
|
def _pure(
|
|
self,
|
|
queries: List[str],
|
|
contents_list: List[List[str]],
|
|
ids_list: List[List[str]],
|
|
top_k: int,
|
|
batch: int = 64,
|
|
) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]:
|
|
"""
|
|
Rerank a list of contents based on their relevance to a query using BAAI normal-Reranker model.
|
|
|
|
:param queries: The list of queries to use for reranking
|
|
:param contents_list: The list of lists of contents to rerank
|
|
:param ids_list: The list of lists of ids retrieved from the initial ranking
|
|
:param top_k: The number of passages to be retrieved
|
|
:param batch: The number of queries to be processed in a batch
|
|
Default is 64.
|
|
:return: Tuple of lists containing the reranked contents, ids, and scores
|
|
"""
|
|
nested_list = [
|
|
list(map(lambda x: [query, x], content_list))
|
|
for query, content_list in zip(queries, contents_list)
|
|
]
|
|
rerank_scores = flatten_apply(
|
|
flag_embedding_run_model, nested_list, model=self.model, batch_size=batch
|
|
)
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"contents": contents_list,
|
|
"ids": ids_list,
|
|
"scores": rerank_scores,
|
|
}
|
|
)
|
|
df[["contents", "ids", "scores"]] = df.apply(
|
|
sort_by_scores, axis=1, result_type="expand"
|
|
)
|
|
results = select_top_k(df, ["contents", "ids", "scores"], top_k)
|
|
|
|
return (
|
|
results["contents"].tolist(),
|
|
results["ids"].tolist(),
|
|
results["scores"].tolist(),
|
|
)
|
|
|
|
|
|
def flag_embedding_run_model(input_texts, model, batch_size: int):
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
raise ImportError("FlagEmbeddingReranker requires PyTorch to be installed.")
|
|
batch_input_texts = make_batch(input_texts, batch_size)
|
|
results = []
|
|
for batch_texts in batch_input_texts:
|
|
with torch.no_grad():
|
|
pred_scores = model.compute_score(sentence_pairs=batch_texts)
|
|
if batch_size == 1 or not isinstance(pred_scores, Iterable):
|
|
results.append(pred_scores)
|
|
else:
|
|
results.extend(pred_scores)
|
|
return results
|