Fix Dockerfile build issue
This commit is contained in:
65
autorag/evaluation/retrieval_contents.py
Normal file
65
autorag/evaluation/retrieval_contents.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import functools
|
||||
from typing import List, Callable, Any, Tuple
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from autorag.evaluation.metric import (
|
||||
retrieval_token_f1,
|
||||
retrieval_token_precision,
|
||||
retrieval_token_recall,
|
||||
)
|
||||
from autorag.schema.metricinput import MetricInput
|
||||
|
||||
|
||||
def evaluate_retrieval_contents(metric_inputs: List[MetricInput], metrics: List[str]):
|
||||
def decorator_evaluate_retrieval_contents(
|
||||
func: Callable[
|
||||
[Any], Tuple[List[List[str]], List[List[str]], List[List[float]]]
|
||||
],
|
||||
):
|
||||
"""
|
||||
Decorator for evaluating retrieval contents.
|
||||
You can use this decorator to any method that returns (contents, scores, ids),
|
||||
which is the output of conventional retrieval modules.
|
||||
|
||||
:param func: Must return (contents, scores, ids)
|
||||
:return: pd.DataFrame, which is the evaluation result and function result.
|
||||
"""
|
||||
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args, **kwargs) -> pd.DataFrame:
|
||||
contents, pred_ids, scores = func(*args, **kwargs)
|
||||
metric_funcs = {
|
||||
retrieval_token_recall.__name__: retrieval_token_recall,
|
||||
retrieval_token_precision.__name__: retrieval_token_precision,
|
||||
retrieval_token_f1.__name__: retrieval_token_f1,
|
||||
}
|
||||
for metric_input, content in zip(metric_inputs, contents):
|
||||
metric_input.retrieved_contents = content
|
||||
|
||||
metrics_scores = {}
|
||||
for metric in metrics:
|
||||
if metric not in metric_funcs:
|
||||
raise ValueError(
|
||||
f"metric {metric} is not in supported metrics: {metric_funcs.keys()}"
|
||||
)
|
||||
else:
|
||||
metric_func = metric_funcs[metric]
|
||||
# Extract each required field from all payloads
|
||||
metric_scores = metric_func(metric_inputs=metric_inputs)
|
||||
metrics_scores[metric] = metric_scores
|
||||
|
||||
metric_result_df = pd.DataFrame(metrics_scores)
|
||||
execution_result_df = pd.DataFrame(
|
||||
{
|
||||
"retrieved_contents": contents,
|
||||
"retrieved_ids": pred_ids,
|
||||
"retrieve_scores": scores,
|
||||
}
|
||||
)
|
||||
result_df = pd.concat([execution_result_df, metric_result_df], axis=1)
|
||||
return result_df
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator_evaluate_retrieval_contents
|
||||
Reference in New Issue
Block a user