Fix Dockerfile build issue

This commit is contained in:
kyy
2025-03-18 16:41:12 +09:00
parent 6814230bfb
commit 9323aa254a
228 changed files with 467 additions and 3488 deletions

293
autorag/deploy/api.py Normal file
View File

@@ -0,0 +1,293 @@
import logging
import os
import pathlib
import uuid
from typing import Dict, Optional, List, Union, Literal
import pandas as pd
from quart import Quart, request, jsonify
from quart.helpers import stream_with_context
from pydantic import BaseModel, ValidationError
from autorag.deploy.base import BaseRunner
from autorag.nodes.generator.base import BaseGenerator
from autorag.nodes.promptmaker.base import BasePromptMaker
from autorag.utils.util import fetch_contents, to_list
logger = logging.getLogger("AutoRAG")
deploy_dir = pathlib.Path(__file__).parent
root_dir = pathlib.Path(__file__).parent.parent
VERSION_PATH = os.path.join(root_dir, "VERSION")
class QueryRequest(BaseModel):
query: str
result_column: Optional[str] = "generated_texts"
class RetrievedPassage(BaseModel):
content: str
doc_id: str
score: float
filepath: Optional[str] = None
file_page: Optional[int] = None
start_idx: Optional[int] = None
end_idx: Optional[int] = None
class RunResponse(BaseModel):
result: Union[str, List[str]]
retrieved_passage: List[RetrievedPassage]
class RetrievalResponse(BaseModel):
passages: List[RetrievedPassage]
class StreamResponse(BaseModel):
"""
When the type is generated_text, only generated_text is returned. The other fields are None.
When the type is retrieved_passage, only retrieved_passage and passage_index are returned. The other fields are None.
"""
type: Literal["generated_text", "retrieved_passage"]
generated_text: Optional[str]
retrieved_passage: Optional[RetrievedPassage]
passage_index: Optional[int]
class VersionResponse(BaseModel):
version: str
class ApiRunner(BaseRunner):
def __init__(self, config: Dict, project_dir: Optional[str] = None):
super().__init__(config, project_dir)
self.app = Quart(__name__)
data_dir = os.path.join(project_dir, "data")
self.corpus_df = pd.read_parquet(
os.path.join(data_dir, "corpus.parquet"), engine="pyarrow"
)
self.__add_api_route()
def __add_api_route(self):
@self.app.route("/v1/run", methods=["POST"])
async def run_query():
try:
data = await request.get_json()
data = QueryRequest(**data)
except ValidationError as e:
return jsonify(e.errors()), 400
previous_result = pd.DataFrame(
{
"qid": str(uuid.uuid4()),
"query": [data.query],
"retrieval_gt": [[]],
"generation_gt": [""],
}
) # pseudo qa data for execution
for module_instance, module_param in zip(
self.module_instances, self.module_params
):
new_result = module_instance.pure(
previous_result=previous_result, **module_param
)
duplicated_columns = previous_result.columns.intersection(
new_result.columns
)
drop_previous_result = previous_result.drop(columns=duplicated_columns)
previous_result = pd.concat([drop_previous_result, new_result], axis=1)
# Simulate processing the query
generated_text = previous_result[data.result_column].tolist()[0]
retrieved_passage = self.extract_retrieve_passage(previous_result)
response = RunResponse(
result=generated_text, retrieved_passage=retrieved_passage
)
return jsonify(response.model_dump()), 200
@self.app.route("/v1/retrieve", methods=["POST"])
async def run_retrieve_only():
data = await request.get_json()
query = data.get("query", None)
if query is None:
return jsonify(
{
"error": "Invalid request. You need to include 'query' in the request body."
}
), 400
previous_result = pd.DataFrame(
{
"qid": str(uuid.uuid4()),
"query": [query],
"retrieval_gt": [[]],
"generation_gt": [""],
}
) # pseudo qa data for execution
for module_instance, module_param in zip(
self.module_instances, self.module_params
):
if isinstance(module_instance, BasePromptMaker) or isinstance(
module_instance, BaseGenerator
):
continue
new_result = module_instance.pure(
previous_result=previous_result, **module_param
)
duplicated_columns = previous_result.columns.intersection(
new_result.columns
)
drop_previous_result = previous_result.drop(columns=duplicated_columns)
previous_result = pd.concat([drop_previous_result, new_result], axis=1)
# Simulate processing the query
retrieved_passages = self.extract_retrieve_passage(previous_result)
retrieval_response = RetrievalResponse(passages=retrieved_passages)
return jsonify(retrieval_response.model_dump()), 200
@self.app.route("/v1/stream", methods=["POST"])
async def stream_query():
try:
data = await request.get_json()
data = QueryRequest(**data)
except ValidationError as e:
return jsonify(e.errors()), 400
@stream_with_context
async def generate():
previous_result = pd.DataFrame(
{
"qid": str(uuid.uuid4()),
"query": [data.query],
"retrieval_gt": [[]],
"generation_gt": [""],
}
) # pseudo qa data for execution
for module_instance, module_param in zip(
self.module_instances, self.module_params
):
if not isinstance(module_instance, BaseGenerator):
new_result = module_instance.pure(
previous_result=previous_result, **module_param
)
duplicated_columns = previous_result.columns.intersection(
new_result.columns
)
drop_previous_result = previous_result.drop(
columns=duplicated_columns
)
previous_result = pd.concat(
[drop_previous_result, new_result], axis=1
)
else:
retrieved_passages = self.extract_retrieve_passage(
previous_result
)
for i, retrieved_passage in enumerate(retrieved_passages):
yield (
StreamResponse(
type="retrieved_passage",
generated_text=None,
retrieved_passage=retrieved_passage,
passage_index=i,
)
.model_dump_json()
.encode("utf-8")
)
# Start streaming of the result
assert len(previous_result) == 1
prompt: str = previous_result["prompts"].tolist()[0]
async for delta in module_instance.astream(
prompt=prompt, **module_param
):
response = StreamResponse(
type="generated_text",
generated_text=delta,
retrieved_passage=None,
passage_index=None,
)
yield response.model_dump_json().encode("utf-8")
return generate(), 200, {"X-Something": "value"}
@self.app.route("/version", methods=["GET"])
def get_version():
with open(VERSION_PATH, "r") as f:
version = f.read().strip()
response = VersionResponse(version=version)
return jsonify(response.model_dump()), 200
def run_api_server(
self, host: str = "0.0.0.0", port: int = 8000, remote: bool = True, **kwargs
):
"""
Run the pipeline as an api server.
Here is api endpoint documentation => https://docs.auto-rag.com/deploy/api_endpoint.html
:param host: The host of the api server.
:param port: The port of the api server.
:param remote: Whether to expose the api server to the public internet using ngrok.
:param kwargs: Other arguments for Flask app.run.
"""
logger.info(f"Run api server at {host}:{port}")
if remote:
from pyngrok import ngrok
http_tunnel = ngrok.connect(str(port), "http")
public_url = http_tunnel.public_url
logger.info(f"Public API URL: {public_url}")
self.app.run(host=host, port=port, **kwargs)
def extract_retrieve_passage(self, df: pd.DataFrame) -> List[RetrievedPassage]:
retrieved_ids: List[str] = df["retrieved_ids"].tolist()[0]
contents = fetch_contents(self.corpus_df, [retrieved_ids])[0]
scores = df["retrieve_scores"].tolist()[0]
if "path" in self.corpus_df.columns:
paths = fetch_contents(self.corpus_df, [retrieved_ids], column_name="path")[
0
]
else:
paths = [None] * len(retrieved_ids)
metadatas = fetch_contents(
self.corpus_df, [retrieved_ids], column_name="metadata"
)[0]
if "start_end_idx" in self.corpus_df.columns:
start_end_indices = fetch_contents(
self.corpus_df, [retrieved_ids], column_name="start_end_idx"
)[0]
else:
start_end_indices = [None] * len(retrieved_ids)
start_end_indices = to_list(start_end_indices)
return list(
map(
lambda content,
doc_id,
score,
path,
metadata,
start_end_idx: RetrievedPassage(
content=content,
doc_id=doc_id,
score=score,
filepath=path,
file_page=metadata.get("page", None),
start_idx=start_end_idx[0] if start_end_idx else None,
end_idx=start_end_idx[1] if start_end_idx else None,
),
contents,
retrieved_ids,
scores,
paths,
metadatas,
start_end_indices,
)
)