Files
autorag_dashboard/autorag/__init__.py
2025-03-18 04:34:57 +00:00

114 lines
3.1 KiB
Python

import logging
import logging.config
import os
import sys
from random import random
from typing import List, Any
from llama_index.core.embeddings.mock_embed_model import MockEmbedding
from llama_index.core.base.llms.types import CompletionResponse
from llama_index.core.llms.mock import MockLLM
from llama_index.llms.bedrock import Bedrock
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.openai import OpenAIEmbeddingModelType
from llama_index.llms.openai import OpenAI
from llama_index.llms.openai_like import OpenAILike
from langchain_openai.embeddings import OpenAIEmbeddings
from rich.logging import RichHandler
from llama_index.llms.ollama import Ollama
version_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "VERSION")
with open(version_path, "r") as f:
__version__ = f.read().strip()
class LazyInit:
def __init__(self, factory, *args, **kwargs):
self._factory = factory
self._args = args
self._kwargs = kwargs
self._instance = None
def __call__(self):
if self._instance is None:
self._instance = self._factory(*self._args, **self._kwargs)
return self._instance
def __getattr__(self, name):
if self._instance is None:
self._instance = self._factory(*self._args, **self._kwargs)
return getattr(self._instance, name)
rich_format = "[%(filename)s:%(lineno)s] >> %(message)s"
logging.basicConfig(
level="INFO", format=rich_format, handlers=[RichHandler(rich_tracebacks=True)]
)
logger = logging.getLogger("AutoRAG")
def handle_exception(exc_type, exc_value, exc_traceback):
logger = logging.getLogger("AutoRAG")
logger.error("Unexpected exception", exc_info=(exc_type, exc_value, exc_traceback))
sys.excepthook = handle_exception
class AutoRAGBedrock(Bedrock):
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
return self.complete(prompt, formatted=formatted, **kwargs)
generator_models = {
"openai": OpenAI,
"openailike": OpenAILike,
"mock": MockLLM,
"bedrock": AutoRAGBedrock,
"ollama": Ollama,
}
# embedding_models = {
# }
try:
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.llms.ollama import Ollama
generator_models["huggingfacellm"] = HuggingFaceLLM
generator_models["ollama"] = Ollama
except ImportError:
logger.info(
"You are using API version of AutoRAG. "
"To use local version, run pip install 'AutoRAG[gpu]'"
)
# try:
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# embedding_models["hf_all_mpnet_base_v2"] = HuggingFaceEmbedding # 250312 변경 - 김용연
# embedding_models["hf_KURE-v1"] = HuggingFaceEmbedding # 250312 변경 - 김용연
# embedding_models["hf_snowflake-arctic-embed-l-v2.0-ko"] = HuggingFaceEmbedding # 250313 변경 - 김용연
# except ImportError:
# logger.info(
# "You are using API version of AutoRAG."
# "To use local version, run pip install 'AutoRAG[gpu]'"
# )
try:
import transformers
transformers.logging.set_verbosity_error()
except ImportError:
logger.info(
"You are using API version of AutoRAG."
"To use local version, run pip install 'AutoRAG[gpu]'"
)