vectordb: - name: chroma_dragonkue2 db_type: chroma client_type: persistent embedding_model: huggingface_drangonku-v2-ko collection_name: huggingface_drangonku-v2-ko path: ${PROJECT_DIR}/resources/chroma node_lines: - node_line_name: retrieve_node_line # Arbitrary node line name nodes: - node_type: retrieval strategy: metrics: [ retrieval_f1, retrieval_recall, retrieval_precision, retrieval_ndcg, retrieval_map, retrieval_mrr ] speed_threshold: 10 top_k: 10 modules: - module_type: bm25 bm25_tokenizer: [ ko_kiwi, ko_okt ] - module_type: vectordb vectordb: chroma_dragonkue2 # chromadb - module_type: hybrid_cc normalize_method: [ mm, tmm, z, dbsf ] target_modules: ('bm25', 'vectordb') weight_range: (0.6, 0.4) test_weight_size: 101 - node_type: passage_reranker # re-ranker strategy: metrics: - retrieval_recall - retrieval_precision - retrieval_map modules: - module_type: dragonkue2 top_k: 5 - node_line_name: post_retrieve_node_line # μƒμ„±λ…Έλ“œ nodes: - node_type: prompt_maker strategy: metrics: - metric_name: bleu - metric_name: meteor - metric_name: rouge - metric_name: sem_score embedding_model: huggingface_drangonku-v2-ko # raise ValueError("Only one embedding model is supported") lang: ko generator_modules: - module_type: llama_index_llm llm: ollama model: [ gemma3:12b, phi4, deepseek-r1:14b, aya-expanse:8b ] request_timeout: 3000.0 modules: - module_type: fstring prompt: - | ### Task: Respond to the user query using the provided context. ### Guidelines: - If you don't know the answer, clearly state that. - If uncertain, ask the user for clarification. - Respond in the same language as the user's query. - If the context is unreadable or of poor quality, inform the user and provide the best possible answer. - If the answer isn't present in the context but you possess the knowledge, explain this to the user and provide the answer using your own understanding. - Do not use XML tags in your response. ### Output: Provide a clear and direct response to the user's query. {retrieved_contents} {query} - node_type: generator # Gen-LLM strategy: metrics: - metric_name: bleu - metric_name: meteor - metric_name: rouge - metric_name: sem_score modules: - module_type: llama_index_llm llm: ollama model: gemma3:12b # phi4, deepseek-r1:14b, aya-expanse:8b temperature: 0.0 request_timeout: 30000.0 batch: 4